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Motivation

Analysis-ready data often takes months to years to
become available due to offline, manual, and iterative
calibration and validation processes.

There is significant effort to streamline and optimize
calibration procedures, metrics, and workflows to
reduce the delay between data taking and analysis.

EXISTING EFFORTS AT JLAB

claS®

CLAS12 Calibration Task Force
(~late 2024)

Objective of making calibrations more efficient, i.e.
(more) automatic, faster, using fewer resources.

CLAS12 CALCOM

Organize and coordinate calibration and
commissioning for all experiments

Guix’

GlueX Calibration and Production
Working Group (~late 2023)

Organize and coordinate calibration and
production workflows for all experiments



ePIC calibrations

Aim to have rapid turnaround time
(2-3 weeks max) from data to full

calibrated/reconstructed data g T e
) i \ PR Forward Calorimetry
| J——— (EM and Hadronic)
Backward /

Calibration requirements and metrics
need to be defined per subsystem
This is not too early to think about! i
Iterations and dependencies N - N

What calibration depends on another, how many
iterations until convergence?

Automatic and/or Autonomous

Develop calibration procedures with with automation
iIn mind



Requirements for autonomous detectors

Monitoring

Real-time data from detectors,
beam conditions, and
environmental sensors. Early
anomaly detection through
statistical or ML-based
methods.

Calibration

Automated alignment and
calibrations that supports both
parasitic updates and
dedicated calibration “runs”

Intelligent Decision-
Making/Control

ML or rules-based approach
for dynamic optimization,
coordination across
subsystems, safe interaction
with control systems
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Human-in-the-Loop
Interface

Transparent logs and reasoning
behind autonomous decisions,
tools for experts to validate,
override, or tune behavior,
dashboard views of system
state and performance



Monitoring

Rules-based monitoring

Alarm if the atmospheric pressure has changed by 0.1
kPa since the start of the run

Live Plot Last 300 Minutes
HD:coda:cdc:p_diff (Sampled)

Advanced monitoring techniques

Fault Prediction at ORNL'’s Spallation Neutron Source
using an uncertainty-aware Siamese model
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Data Quality Monitoring

Shift crews cannot monitor everything, at
the same time, all of the time.

Utilize both supervised and
unsupervised learning

Classify anomalies quickly, reliably, and more
consistently. Clustering algorithms separate
monitoring histograms from different run periods,
experiments, and configurations.

Automatic Logging

Inferences and associated images are recorded
automatically

Customizable

Monitoring histograms can be easily added or
removed depending on experiment needs.
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GlueX Central Drift Chamber

Used to detect and track charged particles
as they traverse the detector.

Specs

e 1.5 mlong x 1.2 m diameter, cylindrical
straw tube chamber

e 3522 anode wires traditionally held at
2125V

e 50:50 Ar:CO2 gas mixture at 30 Pa
above atmospheric pressure

Run-by-run calibrations
Chamber gain and drift time to drift distance




Automated Calibrations

Calculating initial drift time to drift distance calibration constants

using the gas density significantly reduces the number of iterations
required. Constants can be calculated and uploaded at the start of
each run period.
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Dynamic HV Control

RoboCDC adjusts the anode high-voltage settings in
response to environmental conditions, stabilizing the chamber

gain and reducing our dependence on offline calibrations. INSIGHTS

<

active deployments

Control boCDC 21 2 8
Adjustments — r?:c:u?\tml HEH User runs
Interface Active control: HV adjusted
\L | MySQL DB
JEPICS

o 3399 runs

Passive control: HV not adjusted

Carnegie Mellon University




Stabilized chamber gain despite
changing environmental conditions.

First tested with cosmics data before deploying to production.
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Stabilized chamber gain despite
changing environmental conditions.
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ML Operations

MLOps is a set of practices, tools, and processes designed to
streamline and manage the lifecycle of ML models. We can all
build and train models, but not all of them will make it into
production.

Data drifts and model degradation

Data drifts and model degradation will happen!
Automated monitoring and alerts for significant drifts
or degradation.
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Model repositories and storage

Structured repositories to manage and version ML

models
Easy access for rapid updates or rollbacks

Dataset Tracking

Tools to track datasets used in model training to
ensure reproducibility

12



Intelligent Decisions, Policies, and Constraints

Use data and models to propose actions

Intelligent Decisions

Adaptive, data-driven, and predictive actions based on
real-time (or near real-time) conditions.

Control policies
Rules and thresholds guiding how decisions are made

Operational Constraints

Boundaries and safeguards ensuring safety, stability,
and integrity of detector operation

What do we do if the model is uncertain?
Revert back to 2125 V and get more training data

What should we do if the HV set point is outside of
our operational range?

Automatically emall the development team that
passive mode is being enabled.

What do we do if EPICS data is unavailable?
Revert to 2125 V.

These are developed with the
detector experts!
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User Interface/Experience Design

Autonomous detector systems will necessitate new
user interfaces and experiences.

Standard Monitoring

Shift crews monitor detector occupancies, time-series
data, environmental sensors, alarms, etc

Autonomous System Monitoring

Shift crews will need to monitor any automated and/or
autonomous system operating during an experiment

Al/ML Operations

Shift crews and detector experts will need to monitor
any deployed models for performance degradation
and data drifts.
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A multi-agent approach to autonomous
detector systems

Submitted to DOE Early Career Research Program

Physics
A Validation
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Conclusions

Monitoring

Real-time, advanced monitoring with anomaly
detection and fault prediction essential for early issue
detection

Calibration

Automated calibration significantly reduces offline
calibration resources

This work requires collaboration across
physics, computer science, data science, and
design.

Decision Making

Intelligent, data-driven decision policies can enhance
detector stability and reduce manual overhead

Design
New UIl/UX designs crucial for effective human-in-the-
loop interactions and oversight

Thinking about the necessary requirements
and infrastructure now will give us a much
needed head start for the future.
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