Development of an Event Builder with Streaming Readout for the EIC-ePIC Experiment

The University of Tokyo, Quark Nuclear Science Institution Takuya Kumaoka, Taku Gunji

Contraction T.Kumaoka

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

Aim of My Work and Scope of This Presentation

My study aim <u>Development of an ElCrecon algorithm to identify physics collisions within timeframes</u>

Scope of this presentation

- Implementation of a base algorithm of event building in ElCrecon
- Validation that the algorithm works through a blind analysis
- Performance test using primitive triggers

The algorithm will serve as a baseline for:

- Benchmarking other algorithms
- Validating future developments

Readout Data Flow

- The continuous signal is segmented by the Heart Beat Clock (common clock).
- The digital signals are sent to servers.
- Integrate all detector data.

- There are extraneous data.
- By building events, the data can be compact.

My study **Event extraction from streamed data and reconstruction into event data.**

Contraction T.Kumaoka

Simulation Flow

- 1. Event Generator (e.g. PYTHIA) \rightarrow eventGene.hepmc
- 2. Detector simulation (npsim [Geant4 base]) \rightarrow detSim.edm4hep.root
- 3. Reconstruction (eicrecon) \rightarrow recon.edm4hep.root - Digitization - Event Selection My work - Reconstruction
- 4. Physics Analysis

Contraction T.Kumaoka

1. Physics event simulation 2. Detector simulation nnisa hit

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

4 /23 🕟

ElCrecon Framework

Software for reconstructing particle information from simulations or real hit data for physics analysis based on JANA2.

- EICRecon Reference Page: (Main, git, tuto1, tuto2, tuto3).
- Code structure: <u>JANA2</u> (File reader, Reconstruction, File writer)

- Data Structure: edm4eic (git) \leftarrow edm4hep (git) \leftarrow podio (page) yaml \rightarrow (compile w/ podio) \rightarrow C++ class codes

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

JANA2 Data Flow

Event Lv

A split time frame within a time slice needs to be processed. \rightarrow It should be handled in parallel at the event level.

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

6 /23 **(b)**

My Study Targets

4. Terminate processes for time-slices with identified noise events (Using reconstructed tracks).

Progress and Plan

- 1. Create a new factory to time alignment (Done)
- 2. Unfolding trivial test (**Done**)
- 3. Time splitting test (**Done**)
- 4. Timing Coincidence (**Done**)
- 6. Apply detector response (September?)
- 7. Optimize time window, Time alignment, Interval selection (October?)

This Presentation *This study is still foundational stage. →Concrete performance evaluations are future work.

5. Injection of background events and detector noises and evaluation of timing coincidence (time windows vs. rejection, efficiency, primary tracking, etc) (On going: Mid of August)

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

1.1 Hit time vs Hit position (Time Alignment)

These plots show the relation between hit time vs hit position to alignment hit time.

T.Kumaoka

 \rightarrow A correlation between distance and hit time is observed. However, since we are looking at MC hits, this result is expected (W/O detector response).

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

1.2 Time Alignment

Create Factory to do time alignment

Original input data

1.93878, 1.63005, 1.61152

Sort + time alignment (t' = t - 0.003 [ns/mm] * R [mm]) HitChecker: Event 188640 Hits in: 0.863942, 0.867679, 0.889219, 0.943039, 1.06582, 1.37656, 1.41053, 1.49302, 1.5067,

1.66467, 1.68391, 1.76771

It seems work well.

 \rightarrow Future plan: Time response of detectors will be included.

HitChecker: Event 188640 Hits in: 13.1356, 1.12963, 1.2371, 1.03809, 1.02581, 24.2638, 10.5798, 9.64017, 1.77883,

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

2.0 Create Unfold Code

JEventUnfolder (JANA2) Nathan's work: Base of unfold code. It handles to IDs of a time frame (parent) and events (child).

MyTimesliceSplitter (JANA2, unfolding tutorial) Nathan's work: This code is to test JEventUnfolder. It deparses each time region as event level. However, it cannot be used in ElCrecon directly.

TimeframeSplitter (ElCrecon):

This code performs the actual time frame splitting based on JEventUnfolder. **Need to implement time-splitting function without losing physics events.**

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

2.1 Compare Original or W/ Unfolding for Position and Energy

Trivial test: Compare the outputs between the basic topology and the unfold topology

The results show a complete match between cases W/O and W/ unfolding. These results are reasonable.

Contraction T.Kumaoka

3. Time Splitting results

Next: Develop algorithms to decline the intervals of empty or small hits.

Contraction T.Kumaoka

4.1 Time Coincidence

Even if a detector can capture physics events with high efficiency, it must still be time-coincident with other detectors when there is significant noise.

4.2 Trigger Combination

Search for the detector the combination which can capture the remaining physics events

ex) trig1: Backward trig2: Barrel trig3: Forward

Contraction T.Kumaoka

ion

Reduce wrong triggers \rightarrow Strong requirement (number of hits, hit timing, number of detectors)

15/23 🕟

4.3 Trigger Evaluation

In physics simulations, where the event properties (time, number of hits, etc.) are known, we can define physics and noise regions within each time-frame.

- Separate a time-frame by arbitrary-width time slices (e.g., 20 ns).

- Regard the timeslice containing the first hit from the collision origin as a physics event.

- Other timeslices are regarded as background regions, even if they include hits from the collision.

- Find triggers fired with sub-detector combinations. (Currently, we do not require the number of hits, hit positions, hit timing correlations, etc.)

4.4 Simulation Data

Contraction T.Kumaoka

Input simulation file setting (1530 events) (Root file page)

time-frame (2 µs: 500 kHz)

Symbol	Process	Description	Sampling Frequency (kHz)	Status Code Shift
	signal	DIS NC 18x275 Q ² >1 (Deep inelastic scattering neutral current)	500	0
	synrad	Synchrotron Radiation	14000	2000
	ebrems	Electron bremsstrahlung radiation	316.94	3000
	etouschek	Electron Touschek scattering (intrabeam scattering)	1.3	4000
	ecoulomb	Electron Coulomb scattering processes	0.72	5000
	p.b.gas	Proton beam gas interactions	22.5	6000

4.5 **Results of Trigger Contributions**

Trigger ratio for the physics event region and background region

4.6 Trigger Efficiency for each Time-slice Width.

- All time slice width could capture over 90% physics events.
- The background reduction rates for all setting are not significantly changed.
- kHz), it is expected that the number of backgrounds increase fivefold. \rightarrow Next: Need more strong constrain.
- *2 This test does not consider the track reconstruction quality.

trigger/time slice width [ns]	5	10	20	200
Physics trigger rate	1389/1530	1441/1530	1473/1530	1512/1530
(trigger/all events)	= 90.8%	= 94.2%	= 96.3%	= 98.8%
BKG trigger rate	1700/612000	1100/306000	674/153000	173/15300
(trigger/all events)	= 0.3%	= 0.4%	= 0.4%	= 1.1%

Contraction T.Kumaoka

*1 This simulation uses a 500 kHz physics rate; however, in realistic simulation (83

→ Next: Evaluate how the time window affects the track reconstruction quality.

2025/06/27 CNS-Hadron Meeting @ Online 🖇

Progress and Plan

- 1. Create a new factory to time alignment (**Done**)
- 2. Unfolding trivial test (**Done**)
- 3. Time splitting test (**Done**)
- 4. Timing Coincidence (**Done**)
- 5. Injection of background events and evaluation of timing coincidence \rightarrow time windows vs. rejection, efficiency, primary tracking, etc
 - \rightarrow Recently created root files including background by the background group.

(On going: Mid of August)

6. Apply detector response and detector noises (September?)

7. Optimize time window, Time alignment, Interval selection (October?)

Discussion with other groups (1. Detector response)

Now we have only truth hit information.

 \rightarrow To evaluate the streaming readout quality, the detector response is essential.

→ Particularly, the delay and smear effects might affect the event build efficiency.

→ And each effect is different for each sub-detector.

Timeline ?

- Estimation of realistic detector response for each sub-detectors

- Implement these effects

Discussion with other groups (2. Hardware performance limit)

The streaming readout performance depends on computing resource.

- Number of threads
- Process speed
- Data size

Timeline?

- Determine the computing power
- Run ElCrecon using simulation with a test environment

Discussion with other groups (3. Track Reconstruction)

- 1. How to estimate reconstruction quality.
 - Efficiency
 - Resolution

 \rightarrow How to match simulation particles and reconstruction tracks.

 \rightarrow What type of particle should we compare? Final state? Original particle?

2. Track reconstruction requirement

- Number of hits for each sub-detectors
- Hit position, hit timing

2025/07/15 EICUG & ePIC Joint Meeting @ JLab

noise