
JANA2 Updates for Streaming Computing

Nathan Brei
nbrei@jlab.org

ePIC Collaboration Meeting
July 14, 2025

nbrei@jlab.org

JANA2 Updates for Streaming Computing

Motivation
1. Preparing for ePIC calibrations

• This is a golden opportunity to revisit and improve the underlying design

2. Challenges relating to intervals of validity
• Propagating file metadata is nontrivial because not all events in the stream necessarily
came from the same file

• Loading heavy resources (e.g. magnetic field maps, ML model weights) exactly once,
associating physics events with the correct version, and evicting them from cache

3. Re-establishing closure principle
• Any data stream JANA2 can write, JANA2 should also be able to read
• JEventUnfolder produces hierarchically structured event streams, which (until now)
couldn’t be reread by a JANA2 event source without flattening

• Important for distributing the computation across nodes

Nathan Brei (nbrei@jlab.org) 2

nbrei@jlab.org

JANA2 Updates for Streaming Computing

Revisiting calibrations
• Inputs, Outputs, and Services are
declarative and injected;
calibrations are not…

• ChangeRun() is called when the
factory encounters an event with a
different run number

• Inside ChangeRun(), the user code may
manually retrieve calibration values
from one or more Services

• These values are stored directly as
members of the factory

• Service is responsible for caching

1 #include <JANA/Components/JOmniFactory.h> c++
2 #include <JANA/Calibrations/JCalibrationManager.h>
3 #include <datamodel/CalorimeterClusterCollection.h>
4
5 class Cluster_fac_filtered: public JOmniFactory<Cluster_fac_filtered>{
6 private:
7 PodioInput<CalorimeterCluster> m_clusters_in {this};
8 PodioOutput<CalorimeterCluster> m_clusters_out {this};
9 Service<JCalibrationManager> m_calib_manager {this};
10 double m_threshold = 100.0;
11 public:
12 void Configure() {}
13
14 void ChangeRun(int32_t run_nr) {
15 m_calib_manager->GetJCalibration(run_nr)
16 ->Get("MyCAL/cluster_threshold", m_threshold);
17 }
18
19 void Execute(int32_t /*run_nr*/, uint64_t /*evt_nr*/) {
20 m_clusters_out()->setSubsetCollection(true);
21 for (auto cluster : *m_clusters_in()) {
22 if (cluster.getEnergy() >= m_threshold) {
23 m_clusters_out()->push_back(cluster);
24 }
25 }
26 }
27 };

Nathan Brei (nbrei@jlab.org) 3

nbrei@jlab.org

JANA2 Updates for Streaming Computing

Problems with this approach
• JANA2 discourages statefulness but
also mandates it in specific places

• Only supports Run-level data.
Otherwise have to query
CalibrationService on every
PhysicsEvent, or use barrier events

• Parallel processing mixes up the
event ordering, potentially leading
to calibration thrashing

• Each Service needs to have its own
strategy for evicting resources after
their interval of validity has
expired

1 #include <JANA/Components/JOmniFactory.h> c++
2 #include <JANA/Calibrations/JCalibrationManager.h>
3 #include <datamodel/CalorimeterClusterCollection.h>
4
5 class Cluster_fac_filtered: public JOmniFactory<Cluster_fac_filtered>{
6 private:
7 PodioInput<CalorimeterCluster> m_clusters_in {this};
8 PodioOutput<CalorimeterCluster> m_clusters_out {this};
9 Service<JCalibrationManager> m_calib_manager {this};
10 double m_threshold = 100.0;
11 public:
12 void Configure() {}
13
14 void ChangeRun(int32_t run_nr) {
15 m_calib_manager->GetJCalibration(run_nr)
16 ->Get("MyCAL/cluster_threshold", m_threshold);
17 }
18
19 void Execute(int32_t /*run_nr*/, uint64_t /*evt_nr*/) {
20 m_clusters_out()->setSubsetCollection(true);
21 for (auto cluster : *m_clusters_in()) {
22 if (cluster.getEnergy() >= m_threshold) {
23 m_clusters_out()->push_back(cluster);
24 }
25 }
26 }
27 };

Nathan Brei (nbrei@jlab.org) 4

nbrei@jlab.org

JANA2 Updates for Streaming Computing

Barrier events
• The event source can declare an event to be a “barrier event” before it is emitted by calling

event.SetSequential()
• This performs a pipeline flush: The barrier event is held back until all preceding events are
finished, and no subsequent events may be emitted until the barrier event finishes

• This allows for safe arbitrary global state updates, and is used by GlueX for handling
SlowControls data.

OmniFactory Resources
• OmniFactories can declare Resource<T> analogous to PodioInput<T>.
• This is pure syntactic sugar (for now!)
• Addresses the social problems with mandatory statefulness, but doesn’t address the underlying
technical issues

• Question: What is the real difference between a Resource and a Run-level Input?

Nathan Brei (nbrei@jlab.org) 5

nbrei@jlab.org

JANA2 Updates for Streaming Computing

Requirements
• Directly model intervals of validity for all data

• Intervals can be defined at arbitrary levels in the JANA2 event hierarchy, e.g. Run, Subrun,
SlowControls, Block, Timeframe, PhysicsEvent, Subevent.

• Levels are partially ordered: e.g. PhysicsEvent is a child of Timeslice and SlowControls, but
Timeslice and SlowControls are incomparable. The ordering is experiment-dependent.

• The number of in-flight events intervals can be controlled for each level individually

• Automatic cache eviction, destruction, and/or recycling

• Motivating example: Magnetic field map changes every 15 minutes, and the framework enforces
that exactly 1 (or n) magnetic field maps exists in memory at any given time

Nathan Brei (nbrei@jlab.org) 6

nbrei@jlab.org

Good news! We’ve already built a lot of this!

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Recap: EICrecon PhysicsEvent processing topology

𝑃 𝑃 𝑃 𝑃
𝑃 PhysicsEvent

Source
PhysicsEvent

Map
PhysicsEvent

Tap 𝑃

• All events in the topology are PhysicsEvents
• Source is responsible for sequentially reading the input file
• Map is responsible for calculating all reconstruction data in parallel
• Tap is responsible for sequentially writing the output file
• PhysicsEvents are taken from and returned to a pool in order to avoid allocations and limit
the number in memory

Nathan Brei (nbrei@jlab.org) 8

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Recap: EICrecon timeframe splitting

𝑇

𝑇

𝑃(𝑇)
𝑃(𝑇) 𝑃(𝑇)

𝑇

𝑃

Timeframe
Source

Timeframe
Splitter

PhysicsEvent
Map

PhysicsEvent
Tap

𝑇

𝑃

• Timeframe source sequentially reads and emits timeframes

• Timeframe splitter produces a stream 𝑃(𝑇) of PhysicsEvents 𝑃 with a reference back to their
parent Timeframe 𝑇. The Timeframe’s lifetime is at least as long as that of each child
PhysicsEvent.

• The PhysicsEvent pool forwards each attached parent Timeframe to the Timeframe pool,
respecting its child reference count.

Nathan Brei (nbrei@jlab.org) 9

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Design principle: Symmetry
• We’ve already added first-class support for different event levels that capture the memory
semantics of different intervals of validity!

• JEvents are intervals of validity

• The “run number” is the same as the number of the Run-level parent JEvent.

• Any event at any level has a concise stamp describing its full lineage, e.g.
“P:22(R:1,C:3,T:1)”, which is sufficient to retrieve all data dependencies

• If a parent event isn’t attached, the child JEvent can still declare a “virtual parent” at
any level which simply tracks the parent number, analogous to how Run number was formerly
handled

• Input and Resource are equivalent, except Input always retrieves data from a parent JEvent in
the data stream, whereas Resource side-loads it from a Service keyed off of (level, number).

• In the future, Resource could cache its results on the parent JEvent, giving us exactly the
memory semantics we want, and making factories agnostic about where the data comes from

Nathan Brei (nbrei@jlab.org) 10

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Design principle: Closure
• Any data stream JANA2 can write, JANA2 should also be able to read

• Although JEventUnfolder produces hierarchically structured event streams which a
JEventProcessor can write, a JEventSource wasn’t (until recently) capable of emitting such an
event stream

• Important for distributing the computation across nodes, particularly for online calibrations

• Interleaved streams are a first-class concept for streaming hierarchical data, should be
understood, not avoided

• Interleaved streams are tricky to work with
‣ Require preserving the stream ordering
‣ Parent events need to be broadcasted, not scattered
‣ Incredibly effective for serializing and for APIs…

Nathan Brei (nbrei@jlab.org) 11

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Introducing multilevel sources

𝑃(𝑅,𝐶) 𝑃(𝑅,𝐶) 𝑃(𝑅,𝐶)
𝑅

𝐶

𝑃

Multilevel
Source

PhysicsEvent
Map

PhysicsEvent
Tap 𝑃

𝑅

𝐶

• Multilevel source emits PhysicsEvents with the most recent Run and Control events attached as
parents

• The downstream components (JEventProcessors, J{Omni}Factories) don’t require any modification

• R, C, P pools control number of Runs, SlowControls, and PhysicsEvents in flight.

• The PhysicsEvent pool forwards all parent events to their respective pools

• This topology also supports merging streams from separate input files/sockets

Nathan Brei (nbrei@jlab.org) 12

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

JEventSource interface
• User can now set any number of
JEventLevels

• Each {Podio}Output<T> can be
assigned an event level, and
will only be used if it
matches the level of the
provided JEvent container

• User can request a JEvent with
a specific level using
SetNextEventLevel()

• User can return
FailureLevelChange in case the
wrong level is provided

1 class MyMultilevelSource : public JEventSource { c++
2
3 PodioOutput<ExampleCalib> m_calibs_out {this};
4 PodioOutput<ExampleControl> m_controls_out {this};
5 PodioOutput<ExampleHit> m_hits_out {this};
6
7 MyMultilevelSource() {
8 SetCallbackStyle(CallbackStyle::ExpertMode);
9 SetEventLevels({JEventLevel::Run, JEventLevel::SlowControls,
10 JEventLevel::PhysicsEvent});
11
12 m_calibs_out.SetLevel(JEventLevel::Run);
13 m_controls_out.SetLevel(JEventLevel::SlowControls);
14 m_hits_out.SetLevel(JEventLevel::PhysicsEvent);
15 }
16
17 Result Emit(JEvent& event) override {
18 switch (event.GetLevel()) {
19 case JEventLevel::Run: m_calibs_out() = ReadCalibs(); break;
20 case JEventLevel::SlowControls: m_controls_out() = ReadControls(); break;
21 case JEventLevel::PhysicsEvent: m_hits_out() = ReadHits(); break;
22 default: break;
23 }
24 SetNextEventLevel(ReadNextLevel());
25 return Result::Success;
26 }
27 };

Nathan Brei (nbrei@jlab.org) 13

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Multilevel sources with timeframe splitting

𝑇 (𝑅,𝐶)

𝑇 (𝑅,𝐶)

𝑃(𝑇 (𝑅,𝐶))
𝑃 (𝑇 (𝑅,𝐶)) 𝑃 (𝑇 (𝑅,𝐶))

𝑅

𝐶

𝑇

𝑃

Multilevel
Source

Timeframe
Splitter

PhysicsEvent
Map

PhysicsEvent
Tap 𝑃

𝑇

𝑅

𝐶

• Scenario: Begin-of-run and control events are interleaved with timeframes

• Composes with JEventUnfolder (e.g. TimeframeSplitter) exactly as you’d expect

• Downstreams (e.g. factories) transparently receive 𝑃(𝑇 (𝑅,𝐶)) instead of 𝑃(𝑇)

• Downstream components can access 𝑅,𝐶 data by declaring optional inputs

Nathan Brei (nbrei@jlab.org) 14

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Timeframe sources with multilevel splitting

𝑇

𝑃

𝑇

𝑃

𝑃

𝑇

𝑅

𝐶

𝑃

𝑇

𝑅

𝐶

𝑃

Timeframe
Source

Multilevel
Splitter

PhysicsEvent
Map

PhysicsEvent
Tap

• Scenario: Begin-of-run and control events are bundled inside of timeframes

• Requires a multilevel unfolder analogous to the multilevel source

• Splitter produces either 𝑃 ≔ 𝑃(𝑇 ,𝑅,𝐶) or 𝑃 ≔ 𝑃(𝑇 ,𝑅(𝑇), 𝐶(𝑇)) as needed

Nathan Brei (nbrei@jlab.org) 15

nbrei@jlab.org

JANA2 Updates for Streaming Computing
Good news! We’ve already built a lot of this!

Status of work

Extend JEventSource interface to emit multilevel events
Extend JEventPool to ingest multilevel events
Implement JMultilevelSourceArrow
Manually wire JEventSourceArrow topology
Automatically wire JMultilevelSourceArrow topology
Implement JMultilevelUnfoldArrow
Automatically wire JMultilevelSourceArrow topology
Improve topology visibility/debuggability
Implement generalized run numbers (“virtual parents”)
Extend JOmniFactory::Resource<T> to use virtual parents
Extend JOmniFactory::Resource<T> to read/write to physical parents

Nathan Brei (nbrei@jlab.org) 16

nbrei@jlab.org

Thank you!

	Motivation
	Revisiting calibrations
	Problems with this approach
	Barrier events
	OmniFactory Resources
	Requirements
	Recap: EICrecon PhysicsEvent processing topology
	Recap: EICrecon timeframe splitting
	Design principle: Symmetry
	Design principle: Closure
	Introducing multilevel sources
	JEventSource interface
	Multilevel sources with timeframe splitting
	Timeframe sources with multilevel splitting
	Status of work

