

Status of Λ_c^+ Reconstruction in the ePIC framework

Shyam Kumar*, Annalisa Mastroserio, Domenico Elia

INFN Bari, Italy

Summer 2025 Joint EICUG/ePIC Collaboration Meeting

JOINT EICUG/ePIC COLLABORATION

July 14-18, 2025 Jefferson Lab • Newport News, VA

Heavy-flavor Production

Boson-Gluon Fusion (BGF) is leading order [LO] mechanism

https://doi.org/10.1016/j.ppnp.2015.06.002

Particle	Mass (GeV/c²)	ст (μm)	
D±	1.869	312	
D ^o	1.864	123	
B±	5.279	491	
B ^o	5.280	456	
Λ_{c}^{+}	2.286	60	

Study includes $\Lambda_c{}^{\scriptscriptstyle +} \,and \,\Lambda_c{}^{\scriptscriptstyle -} \,both$

Virtual photon (y*) from the electron interacts with a gluon from the proton, produces $c \bar{c} \operatorname{or} b \bar{b}$ pair

Additional Next to Leading Order (NLO) Mechanisms

Gluon splitting, QCD Compton Scattering

Hadronization: Heavy-Flavor Baryon over Meson Ratios

Heavy-flavor hadrons production cross section in nucleon-nucleon collisions using the factorization approach:

15/07/25

Hadronization: Heavy-Flavor Baryon over Meson Ratios

JHEP 12 (2023) 086

 Ξ_{c}^{0}/D^{0} ratio underestimated by all the models, though Catania is close to the measurements

Fragmentation fraction: probability that a heavy guark hadronizes into a specific hadron species

Violation of universality of fragmentation fractions among different collision systems

Hadron chemistry (Λ_c/D°): impact at low-p_T range and forward rapidity (ePIC)

Main objective is to measure Λ_c^+/D^0 ratio in ep, eAu (10X100 GeV) DIS collisions with O² > 1GeV²

15/07/25

Topological Variables (Λ_c^+)

 $\Lambda_c^+ \rightarrow p K^- \pi^+$

$$\vec{SV} = \frac{\vec{pca}_1 + \vec{pca}_2 + \vec{pca}_3}{3}$$

SV for preliminary studies Track errors are currently ignored

$$Track_{DCA} = (\vec{r_0}, \vec{p_0}, q)$$

Topological Variables:

- → DCA_k⁻ and DCA_n⁺ with respect to the reconstructed primary vertex (d0_k, d0_pi)
- Decay length of Λ_c baryon (decaylength)
- Cos θ (angle between **dl** and **p**_{Ac})
- DCA₁₂ minimum distance between the daughter tracks
- → DCA_{Ac} impact parameter of reconstructed Λ_c baryon

Use AdaptiveMultiVertexFinder or KFParticle for secondary vertexing, as they account for track errors

$$\vec{R} \qquad \underline{My \text{ Slides}}$$

$$\vec{p} \vec{c} a_1 \qquad p$$

$$\vec{p} \vec{c} a_2 \qquad p \vec{c} a_3 \qquad Decay \text{ length (dl), Primary Vertex (PV), Secondary Vertex (SV)}$$

$$\vec{d} \vec{l} = \vec{SV} - \vec{PV}$$

d0xy: In the transverse plane

$$d\mathbf{l} = S\mathbf{V} - P\mathbf{V}$$
$$\cos\theta = \frac{d\mathbf{l} \cdot \vec{p}_{\Lambda_c}}{|d\mathbf{l}||\vec{p}_{\Lambda_c}|}$$
$$DCA_{\Lambda_c} = d\mathbf{l}\sin\theta$$

 $DCA_{k\pi} = |p\vec{c}a_1 - p\vec{c}a_2|$, $DCA_{kp} = |p\vec{c}a_1 - p\vec{c}a_3|$, $DCA_{p\pi} = |p\vec{c}a_3 - p\vec{c}a_2|$

 $DCA_{12} = min \{ DCA_{nK}, DCA_{KP}, DCA_{nP} \} Cut$

K

15/07/25

Data Sample ($Q^2 > 1 \text{ GeV}^2$)

- \succ Reconstruction of Λ_c^+ Baryon
 - → Λ⁺ sample PYTHIA8 ep, NC, 10X100, Q² >1 GeV² events (~1646 M DIS): Events = 99,794
 - → DIS Sample: 24.12.0/epic_craterlake/DIS/NC/10x100/minQ2=1: Total files 5180 and Events = 4,976,419

Truth Particle Identification (PID)

Merging Signal and Background (Λ_c^+ Sample and DIS Events)

15/07/25

~4527M (Sampled)

Λc+ Reconstruction: Shyam Kumar

15/07/25

Invariant Mass Plots (Λ_c^+)

 $-1.0 < y < 1.0 \&\& 2.0 < p_{T} (GeV/c) < 5.0$

 $L_{int} = 10 \, \text{fb}^{-1}$

$N_{events} = 10 \times 4.527 \times 10^{5} \times 10^{3} = 4527 M$

15/07/25

Ac+ Reconstruction: Shyam Kumar

2.7 2.8

 $-1.0 < y < 1.0 \&\& 5.0 < p_{-} (\text{GeV}/c) < 10.0$

→ Λ⁺_c Candidates

Total Fit

Entries = 6570.0

Student-t Signal

 $S(2\sigma) = 173.32$

 $B(2\sigma) = 148.56$

 $S/B(2\sigma) = 1.17$

 $\gamma^{2}/NDF = 1.08$

Λ⁺_c Candidates

Total Fit

Entries = 33308.0

Student-t Signal

 $S(2\sigma) = 509.10$

 $S/B(2\sigma) = 0.25$

 χ^2 /NDF = 0.60

2.5 2.6

 $B(2\sigma) = 2008.80$

Significance = 10.15

Poly2 Background

Significance = 9.66

Poly2 Background

Implementation of Machine Learning Boosted Decision Tree (BDT) Binary Classifier

hipe4ml package

https://doi.org/10.5281/zenodo.5070131

 Λc + Reconstruction: Shyam Kumar

Comparison of Bkg features between Λ_{c}^{+} and DIS Sample

The shape of features are different for the two backgrounds so they were not merged for ML

Strategy for Machine Learning

Signal: Signal from Λ_c^+ Sample + Signal from DIS Sample **Background:** Background from DIS Sample

Topological Preselection

 $(m_{\wedge c} > 1.8 \&\& m_{\wedge c} < 2.8) \&\& (d0xy_p > 0.02 \&\& d0xy_p < 10.) \&\& (d0xy_p > 0.02 \&\& d0xy_p < 10.) \&\& (d0xy_p > 0.02 \&\& d0xy_k < 10.) \&\& (d0xy_k > 0.02 \&\& d0xy_k < 10.) \&\& (d0xy_k > 0.02 \&\& d0xy_k < 10.) \&\& dcay_length < 100.$

Training Sample: 80%, Test Sample: 20%

Signal: Signal from $\Lambda_{,+}^+$ Sample + Signal from DIS Sample

Background: Background from DIS Sample

Signal and Background Distributions

15/07/25

Correlation Matrix

Signal candidates: 3113

Background candidates : 3113

-1 < y < 11 < p_T (Λ_c^+) < 10 GeV/c

Keeping only a few features due to limited statistics and also analytical approach for secondary vertexing

ML Output

Rapidity (y)

ML approach for Λ_c is implemented:

- Limited statistics due to a small test sample
- Poor DCA resolution at large rapidity ($c\tau \sim 60 \ \mu m$ for Λ_c)
- Secondary vertexing needs to be improved
- The ML approach will be optimized once a new sample with larger statistics becomes available to achieve the best results

No ML: No BDT Cut

Significance_{BDT Cut} =
$$\frac{S_{\text{No ML}} \times \epsilon_{\text{Signal}}}{\sqrt{S_{\text{No ML}} \times \epsilon_{\text{Signal}} + B_{\text{No ML}} \times \epsilon_{\text{Background}}}}$$

At low p_T : $\sigma(DCA_p) > \sigma(DCA_k) > \sigma(DCA_\pi)$ Slide 5

15/07/25

- > Implemented the first version of the Λ_{c^+} reconstruction code (will commit the code soon)
- Machine learning (ML) has also been developed but currently limited by insufficient statistics
- Future Steps:
 - Further improve the performance using secondary vertexing (e.g., KFParticle or AdaptiveMultiVertexFinder)
 - ML with a newly simulated large-statistics sample
 - Use realistic PID for protons once the new simulation is available
 - Extract the final results using ML in different y and p_T bins once full simulated sample is available
 - Evaluate the Λ_c^+ baryon reconstruction efficiency using both preselection and BDT cut efficiencies
 - Estimate the Λ_c '/D^o ratio using machine learning
 - Implement additional models, such as neural networks (Binary classifiers as well as Autoencoders)

Thank you for your attention!

Topological Variables

Primary Vertex

Topological Variables:

- DCA_{k} and DCA_{n} with respect to the reconstructed primary vertex (d0 k, d0 pi) →
- Decay length of D⁰ meson (decaylength) →
- $\cos\theta$ (angle between **dl** and **p**_{D0}) →
- DCA₁₂ distance between the daughter tracks of D⁰ →
- DCA_{D0} impact parameter of reconstructed D⁰ meson →
- m_{D0} invariant mass of kaon and pion pairs →
- pt D0 reconstructed pt of the D^o meson →
- eta D0 reconstructed η of the D⁰ meson →
- Multiplicity (mult) →

15/07/25

Decay length (dl), Primary Vertex (PV), Secondary Vertex (SV)

$$\vec{dl} = \vec{SV} - \vec{PV}$$
$$\cos \theta = \frac{\vec{dl} \cdot \vec{p}}{|\vec{dl}||\vec{p}|}$$
$$DCA_{D0} = dl \sin \theta$$

Track Parametrization (Local to Global)

Vector3 LineSurface::localToGlobal(const GeometryContext& gctx, const Vector2& lposition, const Vector3& direction) const

{

Vector3 unitZ0 = lineDirection(gctx);

// get the vector perpendicular to the momentum direction and the straw axis

Vector3 radiusAxisGlobal = unitZ0.cross(direction);

Vector3 locZinGlobal = transform(gctx) * Vector3(0., 0., lposition[1]);

// add loc0 * radiusAxis

return Vector3(locZinGlobal + lposition[0] * radiusAxisGlobal.normalized());

Calculation

UnitZ0: is (0,0,1) vector along the z-axis for cylinder and disks.

direction: (p Cos(phi) Sin(theta), p Sin(phi) Sin(theta), p Cos(theta)) radiusAxisGlobal = UnitZ0 Cross product direction = (-p Sin(phi) Sin(theta), p Cos(phi) Sin(theta), 0)

radiusAxisGlobal.Normalized = (-Sin(phi), Cos(phi), 0)locZinGlobal = (0,0,l1) (is same as global)

 $\label{eq:Global position = locZinGlobal + lposition[0] * radiusAxisGlobal.normalized() = (0,0,11) + l0(-Sin(phi), Cos(phi), 0)Global Position = (-l0 Sin(phi), l0 Cos(phi), 11)$

Returns the components, which we are using in HF analysis.

 $x = -I_0 \operatorname{Sin} \phi$, $y = I_0 \operatorname{Cos} \phi$, $z = I_1$

15/07/25

ML Output

-1 < y < 1 and 1 < $p_{_{\rm T}}$ ($\Lambda_{_{\rm c}}{}^{_+})$ < 10 GeV/c

Important features:

- The training and test RMSE curves converge smoothly: Good generalization with low variance
- Model performance stabilizes beyond ~2000 training samples

15/07/25

Model's Prediction for a Single Λ_{c}^{+} Baryon

higher *₹* lower f(x)base value -1.39-1.6-1.4-1.2 -1.0-0.8-0.6 -0.400 0.2 -0.2 $d0xy_p = 0.13$ d0xy pi = -0.64dca 12 = -0.60costheta = -0.33

Feature values

Based on concept of Game Theory in Mathematics SHAP (SHapley Additive exPlanations)

--- Test Sample 0 ---

X_test:	feature values	SHAP Values from ML M	/lodel
d0xy_p	0.026224	0.13077936	
d0xy_pi	0.655220	-0.64195323	
Dca_12	0.389333	-0.5982297	
decay_lengt	n 0.305697	0.04526144	
Costheta	-0.158175	-0.32825777	
y_test: 0	S	HAP Sum: -1.3924	

Base Value (Model's average prediction): 0.0010833276

Model's Predicted Value: -1.3913167

Predicted Probabilities from model: [0.8008025 0.19919747]

SHAP Computed Probability: 1./[1+exp(-SHAP Predicted Value)]

Background = 0.8008023559279468, Signal = 0.19919764407205323

If f(x) > 0: prediction pushes towards signal while for the other case as a background

SHAP Prediction from model for each feature

$$f(x) = Base value + \sum_{i=features} SHAP_i$$

f(x): Model's prediction for a sample

Base value = Model's average prediction for entire data set Sum of SHAP of individual features contributions

 $y_i = 0.0010833276 - 1.3924 = -1.3913167$

Sigmoid function:
$$S(f(x)) = \frac{1}{1 + e^{-f(x)}}$$

For the classifier f(x) is transformed in probability using sigmoid function

Probability:
$$S(f(x)) = \frac{1}{1 + e^{-(-1.3913167)}} = 0.19919$$

Probability of being signal is ~ 20 % (prediction) while $y_{test} = 0$

Ac+ Reconstruction: Shyam Kumar

15/07/25