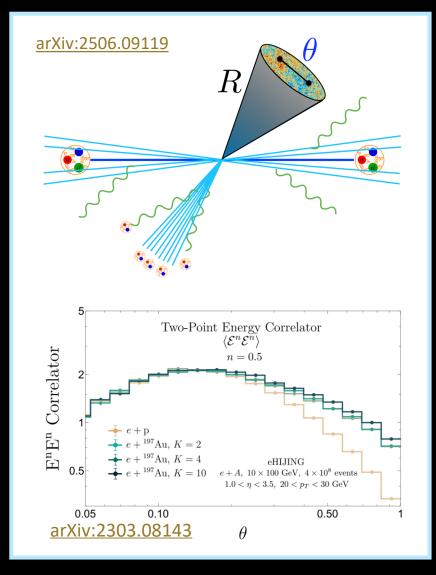


ES Analysis & Software Updates

EIC UGM 2025, Jet/HF Workfest Derek Anderson Jefferson Lab

Outline

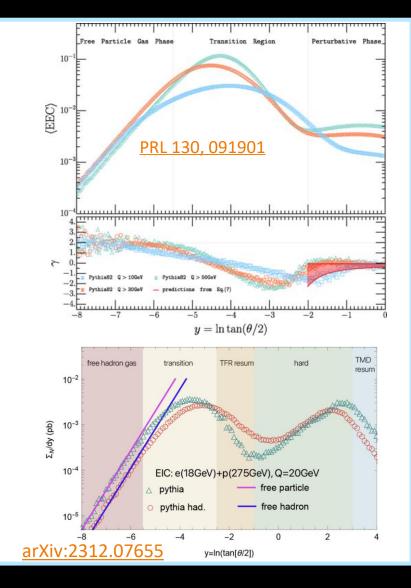

 1) ES Analysis Update, Nucleon-Energy Correlators
 2) PF Update
 3) Jet EDM Proposal

ES Analysis Update | Energy-Energy Correlators

2-Point Energy Correlators (EEC)

$$\text{EEC}(\theta) = \frac{1}{\sigma} \sum_{(i,j) \in \text{jet}} \int d\sigma \frac{E_i E_j}{E_{\text{jet}}^2} \delta(\theta_{ij} - \Delta \theta)$$

- E_i = energy of ith jet constituent
- θ = distance between pairs of jet constituents
- Energy-Energy Correlators: measure statistical correlations in energy flux
 - 2-point allows for clean imaging of jet structure as function of angular scale
 - Very effective tools at hadron colliders, and potentially at EIC!
- Commonly measured in jets today
 - But historically was over all particles in event!
 - > C.f. PRL 41 (1978) 1585
 - More event-shape approach being revisited today
 - E.g. aziumuthally-dependent EECs (arXiv:2310.1519), or Nucleon-Energy Correlators



ES Analysis Update | Nucleon-Energy Correlators

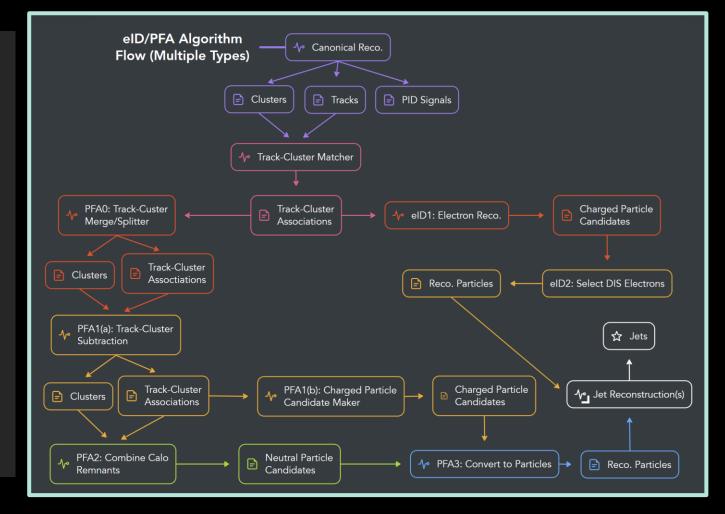
Nucleon-Energy Correlators (NEC)

NEEC =
$$\sum_{i} \int d\sigma(x_B, Q^2, p_i) x_B^{N-1} \frac{E_i}{E_p} \delta(\theta - \theta_i)$$

- E_i , θ_i = energy, Breit frame angle of ith particle
- E_p = energy of scattered proton
- **Nucleon-Energy Correlators:** provide a variation of EECs applicable to both collider & fixed target kinematics!
 - In essence: $\theta_{ij} \rightarrow \theta_{breit}$
 - > Enables sensitivity to different physics processes by selecting different θ_{breit}
 - See <u>PRL 130, 091901</u>, <u>arXiv:2312.07655</u>,
- Worthwhile observable to study because:
 - Potential connections
 - > To TMD PDFs (arXiv:2403.08874)
 - > To Fracture Functions (arXiv:2406.08559)
 - Stress test of our PF algorithms

ES Analysis Update | Current Status

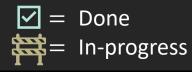
- **Current status:** in code development!
 - Analysis code on GitHub at:
 - > EPNucleonEnergyCorrelator.cxx
 - > <u>EPNucleonEnergyCorrelator.jl</u>
- EPNucleonEnergyCorrelator.cxx: c++ implementation using RDataFrames
 - Prototyping code with <u>a ROOT macro</u>
 - Planning to convert to physics benchmark
 - Will evolve code into a compiled library for ease of deployment and extension when ready
- EPNucleonEnergyCorrelator.jl: planned Julia implementation
 - Won't start on until c++ version is functioning and we have a solid set of Early Science plots
- 1st Round of Plots: next meeting! (Apologies!)

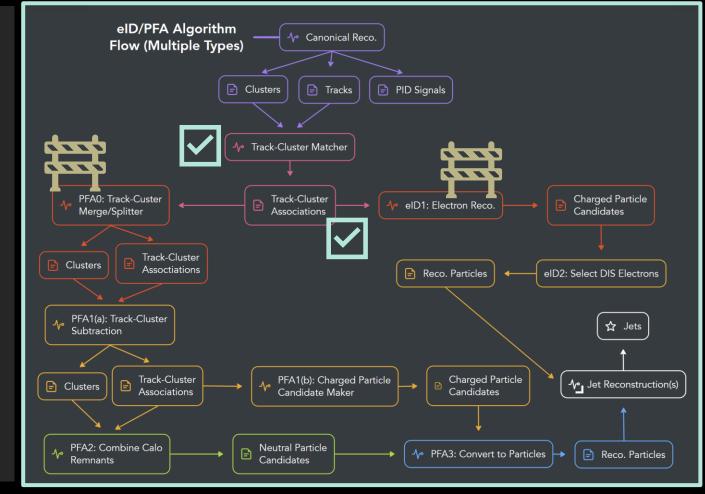


Particle Flow Update | In-Progress Baseline

PFAlpha: the proposed baseline, looks like:

- 1) [PFA-1] Match tracks to EMCal, HCal clusters
- [PFA0] Merge clusters based on track E/p in a cone of size R₀
- [PFA1a] Subtract expected track energy from merged clusters
 - Split into tracks + expected energy, and remnant clusters (leftover energy)
- 4) [PFA1b] Convert tracks + expected energy to particle candidates
- **5) [PFA2]** Combine remnant EMCal, HCal clusters in a cone of size R₁, convert to particle candidate
- 6) [PFA3] Covert candidates to reconstructed particles




Particle Flow Update | Timeline Since Frascati

Developments since Frascati CM:

- [02.06.2025] <u>PFAO PR opened</u> and in progress
 ∽ (See next slide)
- 2) [02.23.205] PFA1(a) PR ready to open after PFA0 merged
 - → (PR needs update)
- 3) [02.27.2025] Held 1st PF SubWG meeting
- 4) [03.11.2025] Draft PR for candidate types open
- 5) [03.28.2025] Initial track-cluster matcher merged
- 6) [05.06.2025] Track-Protocluster link merged
- 7) [07.06.2025] Multi-calo track-cluster matcher merged

Particle Flow Update | Current Status and To-Do's

- Immediate task: Complete PFA0 (<u>ElCrecon#1699</u>)
 - Track-Protocluster Links now implemented (EDM4eic#108)
 - Began integrating into merge/splitter, but Link
 Collections seemingly don't play nicely with
 Omnifactories...
 - Discussed with Nathan (now investigating), need to circle back
- Next Steps: after PFA0
 - Implement "promotion" algorithm to convert
 Track-Protocluster Links to Track-Cluster Matches
 - Revive and finish PFA1 (<u>ElCrecon#1627</u>)
 - PFA2 (calo remnant combiner) on hold until PFA1 is merged

- Current Status: work paused for a while, now resuming
 - Pause due to professional transitions, conferences, etc.
- Want to restart semi-regular PF technical meetings after EIC UGM!
 - ∽ Look for emails & time polls soon
- Related tasks
 - Make sure all relevant algorithms are using trackcluster matches
 - Implement algorithm to convert track-cluster matches to reco particles (for eID)
 - Upgrade Track-Cluster Matches from associations to <u>links</u>

Jet EDM Proposal | Context

- Jets produced in ElCrecon: currently stored as edm4eic:: ReconstructedParticle
 - Workaround due to lack of dedicated jet type
 - Not ideal for several reasons:
 - Jets are extended objects
 - > Jets can pick up background
 - Conceptual clarity (e.g. parton, jet not 1-to-1)
- Put together a proposal inspired by FastJet PseudoJet!
 - PR: <u>EDM4eic#118</u>
 - Issue: EDM4eic#88

19	namespace eicrecon {
20	
21	template <typename inputt=""></typename>
22	<pre>using JetReconstructionAlgorithm =</pre>
23	algorithms::Algorithm <algorithms::input<typename inputt::collection_type="">,</algorithms::input<typename>
24	algorithms::Output <edm4eic::reconstructedparticlecollection>>;</edm4eic::reconstructedparticlecollection>
25	
26	template <typename inputt=""></typename>
27 🗸	class JetReconstruction : public JetReconstructionAlgorithm <inputt>,</inputt>
28	<pre>public WithPodConfig<jetreconstructionconfig> {</jetreconstructionconfig></pre>
29	
30	public:
31 🗸	<pre>JetReconstruction(std::string_view name)</pre>
32	: JetReconstructionAlgorithm <inputt>{</inputt>
33	name,
34	<pre>{"inputReconstructedParticles"},</pre>
35	{"outputReconstructedParticles"},
36	"Performs jet reconstruction using a FastJet algorithm."} {}

Jet EDM Proposal | Proposal

- **Right:** the proposed jet type
 - Energy, momentum fields identical to Reconstructed Particle
 - Adds field for area, background energy density

$\circ~$ Note 3 design choices:

- 1) Only relations to reconstructed particles allowed
 - Places jet reco at the final stages of reconstruction
- 2) Jet substructure *not* included
 - ∽ Deferred to analysis
- Relation to other jets allows for indication of sub-jets, seed jets, or background jets

529	+	## ====================================		
530	+	## Jets		
531	+	##		
532	+			
533	+	edm4eic::Jet:		
534	+	Description: "A reconstructed jet, inspired by the FastJet PseudoJet"		
535	+	Author: "D. Anderson"		
536	+	Members:		
537	+	- float area // jet area		
538	+	- float energy // jet energy [GeV]		
539	+	 float backgroundEnergy // background energy density * area [GeV] 		
540	+	- edm4hep::Vector3f momentum // jet 3-momentum [GeV]		
541	+	OneToManyRelations:		
542	+	- edm4eic::Jet jets // jets that have been combined to form this jet		
543	+	 edm4eic::ReconstructedParticle constituents // constituents of this jet 		

Jet EDM Proposal | Downstream Changes

What components would need to be updated?

- 1) [EICrecon] jet reconstruction algorithm
- 2) [physics_benchmarks] jet <u>benchmark</u>
- 3) [snippets] TTree reader jet example
 - Not required, but good for documentation!
- 4) All user analysis scripts/macros

Any others?

What changes would we need to make?

- Change edm4eic::ReconstructedParticle → edm4eic::Jet
- 2) Change getParticles() \rightarrow getConstituents()
- Remove any references to getPDG(), getCharge()

But that's it!

Otherwise new type would behave identical to Reconstructed Particle

Thanks! Questions, Discussion?

Backup | Initial PFA Attempt

- **PFAlpha:** initial stab in <u>ElCrecon#1186</u> (now closed)
 - Initial implementation aimed for just a single algorithm
 - Initially even aimed to handle all 3 regions of central detector in one algorithm...

$\circ~$ The gist:

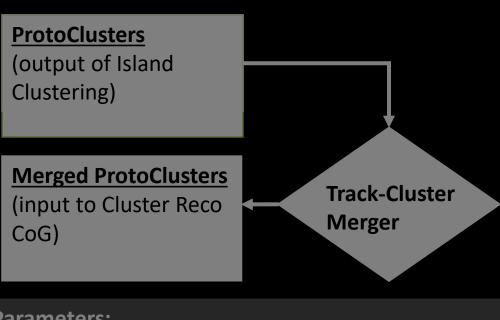
- 1) Project tracks through calos
- 2) Associate all calo clusters in cone of size R around track
- 3) Sum all calo energy in cone and subtract expected track energy from sum
- 4) Merge leftover clusters in cones of size R
- 5) Return PFObjects (reco. particles)
 - Tracks
 - Subtracted, merged clusters
- Control (Details in backup)

• Clear Drawbacks!

- 🗵 Monolithic by definition
- It Hard to maintain, evolve
- ☑ Wiring in new PF algorithms means rewriting lots of code

Parameters

- R_{sum}^{ECal} : radius in (η, φ) in which to combine ECal clusters
- **R**^{HCal}: same but for HCal
- *f*^{ECal}: fraction of track energy to subtract from ECal clusters
- f_{sub}^{ECal} : same but for HCal

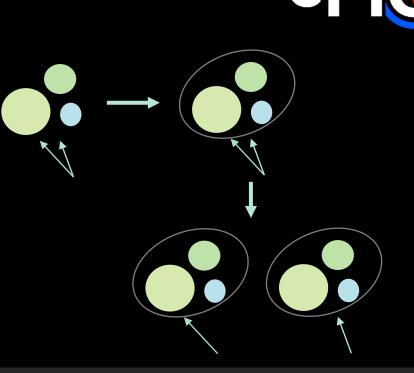

Backup | Track-Cluster Merge/Splitter (1/2)

- Track-Cluster Merging: implemented to address in pTDR need (cluster merging)
 - Algorithm outine based on ATLAS's split recovery procedure
 - > c.f. Eur. Phys. J. C (2017) 77:466
 - > Implemented in <u>ElCrecon#1406</u>
- $\circ~$ The gist:
 - 1) Match track projection to cluster
 - 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$

- 3) If $S < S_{cut}$, add clusters inside Δr_{add}
- 4) If multiple tracks pointing to merged cluster:
 - 3) Split into one cluster for each track & reweight transverse shape by p_{trk} , track projection

Parameters:


- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- S_{cut}: Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting

Backup | Track-Cluster Merge/Splitter (1/2)

- Track-Cluster Merging: implemented to address in pTDR need (cluster merging)
 - Algorithm outine based on ATLAS's split recovery procedure
 - > c.f. Eur. Phys. J. C (2017) 77:466
 - > Implemented in <u>ElCrecon#1406</u>
- $\circ~$ The gist:
 - 1) Match track projection to cluster
 - 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$

- 3) If $S < S_{cut}$, add clusters inside Δr_{add}
- 4) If multiple tracks pointing to merged cluster:
 - 3) Split into one cluster for each track & reweight transverse shape by p_{trk} , track projection

Parameters:

- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- *S*_{cut}: Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting

Backup | Mapping Old Onto New

Track-Cluster Matcher 1) Subtract projected E_{trk} from ECal, HCal clusters	PFA2 2) Combine remaining ECal, HCal clusters into topo-
a) Identify seed (highest p_{trk}) track projection at inner face of ECal	clusters a) Combine nearby ECal, HCal clusters
b) Sum E_{trk} of all projections in R_{sum}^{ECal} , R_{sum}^{HCal} of PFAO seed c) Sum E_{clust} of all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} respectively	i. Identify seed (highest E_{clust}) ECal cluster ii. Merge all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
d) If $\Sigma E_{trk}^{ECal,HCal} < \Sigma E_{clust}^{ECal,HCal}$ i. Subtract $f_{trk}^{ECal,HCal} \times E_{trk}^{ECal,HCal}$ of nearest projection from each cluster ii. Pass subtracted clusters onto step 2 e) Repeat 1(a) - 1(d)(ii) until all projections have been used	 iii. Repeat 2(a)(i) – 2(a)(iii) until no ECal clusters are left b) Combine remaining HCal clusters Identify seed HCal cluster Add all HCal clusters in R^{HCal}_{sum} of seed Repeat 2(b)(i) – 2(b)(iii) until no HCal clusters left
	3) Return PFObjects PFA1(b)/PFA3

Note: new approach *also* splits up PFA0 - 2 into separate calorimeters/eta regions