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Outline
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1. Motivation and Good-Walker paradigm
2. Details, BeAGLE dataset
3. Incoherent event tagging efficiency study
How well can we tag incoherent events at ePIC?

4. Comparisons between Pb and Au
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Good-Walker paradigm
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 Coherent exclusive vector meson production events are sensitive to the
transverse gluon distribution within the nucleus
* |ncoherent events are sensitive to event-by-event fluctuations

* Even nuclear excitations are incoherent, and the Good-Walker paradigm
breaks down

 Measuring these photons coming from nuclear de-excitations can serve as a
means of tagging incoherent events
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Physics goals at the EIC
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T. Toll and T. Ulirich, Phys. Rev. C 87, 024913 (2013),
arXiv:1211.3048 [hep-ph].
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Physics goals at the EIC
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Gold and Lead

From a partonic perspective, Au and
Pb are similar (Woods-Saxon
distributed nuclei and similar
shadowing)

But they have differences in their
nuclear shells, giving differences in the
gamma spectrum emitted from de-
excitation

The Good-Walker paradigm breaks
down even in any case where there is
some change to the nucleus

The first excited state of Au (77 KeV) is
much lower than than Pb (2.6 MeV),
and decays much slower
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Excited Nuclear States for Au-197 |

Energy levels

Au excited states
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Gold and Lead

Excited Nuclear States for Pb-208 (Lead)

UCDAVIS
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Excited Nuclear States for Au-197 |

Pb excited states .
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Event Generation UCDAVIS
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(In target rest frame)

 Use BeAGLe to generate ~ 20 000
events with J/¥ production

.| |BeAGLE
10

- 18X110 GeV
77 KeV excited Au state | /\

- very long lived (2 ns) First excited state of Pb 2.6 MeV |
—= = —_—

e e+Pb 18x110 GeV

|
e e+AU 18x110 GeV

102

» (Calculate our ability to veto
iIncoherent VM production events

* |s there a target species that is
preferred for VM production?

0.0 0.5 1.0 2.0 2.5 3.0

1.5
E, (MeV)
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Event Generation
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Investigation of the background in coherent J/i production at the EIC
Wan Chang,'2'* Elke-Caroline Aschenauer,?t Mark D. Baker,>  Alexander Jentsch,?:§
o ~ ) | ) ’y s |7
Use BeAG Le tO generate 300 OOO Jeong-Hun Lee,? Zhoudunming T\l,2’4’ﬁﬂ Zhongbao Yin,! and Liang Zheng®
. - ' Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
events Wlth J/\P prOd UCtIOn Central China Normal University, Wuhan 430079,China

2 Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
3Mark D. Baker Physics and Detector Simulations LLC, Miller Place, NY 11764, U.S.A.

° e+Pb 1 8X1 -1 O Gev “Center for Frontiers in Nuclear Science, Stony Brook, NY 11794, U.S.A.
®School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
(Dated: August 10, 2021)

e e+AuU 18x110 GeV

e Veto.1: no activity other than e~ and J/1 in the
main detector ( |n| < 4.0 and pr > 100 MeV /c) ;

o (Calculate our ability to veto

' : e Veto.2: Veto.1l and tron in ZDC:
incoherent VM production events eto-2: Yeto.% and no neutron in

e Veto.3: Veto.2 and no proton in RP;
. Paper from 2021, try to reprgd uce e Veto.4: Veto.3 and no proton in OMDs;

the different veto efficiencies e Veto.5: Veto.4 and no proton in BO;

e Veto.6: Veto.5 and no photon in BO:

e Veto.7: Veto.6 and no photon with £ > 50 MeV in
ZDC.
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Percentage of surviving events

e Veto.l: no activity other than e~ and J/v in the
main detector ( |n| < 4.0 and pr > 100 MeV /c) ;

e Veto.2: Veto.1 and no neutron in ZDC;
e Veto.3: Veto.2 and no proton in RP;
e Veto.4: Veto.3 and no proton in OMDs;
e Veto.5: Veto.4 and no proton in BO;
e Veto.6: Veto.5 and no photon in BO;

e Veto.7: Veto.6 and no photon with £ > 50 MeV in
ZDC.

e+Pb 18 X 110 GeV

UNIVERSITY OF CALIFORNIA

Veto Stage | This study (%) | Paper (%)
Veto 1 85.0682 86.9
Veto 2 5.128 D.81
Veto 3 5.128 D.81
Veto 4 5.1062 5.09
Veto 5 4.639 4.32
Veto 6 0.7818 2.29
Veto 7 0.2204 1.06

* The difference in surviving events could come from different BeAGLE versions,
slightly different detector models, no crab crossing effect

e No reconstruction here
July 17, 2025
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Comparison to Gold

* A first look shows that Au performs
similarly to Pb

UNIVERSITY OF CALIFORNIA

Percentage of surviving events

 But we have to remove the Iong—lived Au (%) Pb (%)

states (crude cut; remove particles Veto Stage |~ study | Paper | This study | Paper
with £, < 409 KeV) Veto 1 85.019 | N/A | 85.0682 | 86.9

| Veto 2 5.919 N/A 5.128 5.81

* Not pertect because higher states Veto 3 5019 N/A 5.128 5.81
fﬁ;'?scli%ﬁ’l'icte%a” intermediate state Veto 4 58064 | N/A | 51062 | 5.0
Veto 5 5.2898 N/A 4.639 4.32

Veto 6 0.2614 N/A 0.7818 2.29

Veto 7 0.0748 N/A 0.2204 1.06
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Comparison to Gold

* A first look shows that Au performs
similarly to Pb

 But we have to remove the long-lived
states (crude cut; remove particles

with E, < 409 KeV)

* Not perfect because higher states
could decay into an intermediate state
that is short lived

July 17, 2025

Percentage of surviving events
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Veto Stage Au (%) Pb (%)

This study | Paper | This study | Paper
Veto 1 85.129 N/A 85.0682 86.9
Veto 2 5.9234 N/A 5.128 5.81
Veto 3 5.9234 N/A 5.128 5.81
Veto 4 5.9004 N/A 5.1062 5.09
Veto 5 5.2922 N/A 4.639 4.32
Veto 6 4.7106 N/A 0.7818 2.29
Veto 7 3.8448 N/A 0.2204 1.06

Much higher after we cut the Au states

Mathias Labonté
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t - dependence

BeAGLE 18x110 GeV » See a difference in our ability to
veto at low ¢

UNIVERSITY OF CALIFORNIA

1.10

1.05

1.00

Veto Efficiency

0.95

098 00 0.05 0.10 0.15 0.20
|t| [GeV?]
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t - dependence

1st mMinimum 2nd minimum 3rd minimum

BEAGLE 18x110 GeV » See a difference in our ability to
veto at low ¢

UNIVERSITY OF CALIFORNIA

1.10

1.05

e However, still above our 90%
requirement

1.00

e Remains to be seen if this is
good enough after accounting for
detector effects

Veto Efficiency

0.95

e How well will we be able to
see these minima®?

098 00 0.05 0.10 0.15 0.20
t| [GeV?]
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t - dependence

1st mMinimum 2nd minimum 3rd minimum
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BeAGLE 18x110 GeV e + Au Veto Breakdown
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t - dependence
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e + Au Veto Breakdown

e Veto.1: no activity other than e~ and J/1 in the
main detector ( |n| < 4.0 and pr > 100 MeV /c) ;

1.0

e Veto.2: Veto.1 and no neutron in ZDC; 0.8

e Veto.3: Veto.2 and no proton in RP;

O
o

e Veto.4: Veto.3 and no proton in OMDs;

O
IN

e Veto.5: Veto.4 and no proton in BO;

Veto Efficiency

e Veto.6: Veto.5 and no photon in BO;

—
N

e Veto.7: Veto.6 and no photon with £ > 50 MeV in
ZDC.

0.0

0.00 0.05 0.10 0.15 0.20
t] [GeV?]
 Most events are handled by the

forward systems
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Conclusion
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 Pb seems to perform better
* Using a crude cut to eliminate the long lived states

* Should investigate further how to best do this

e But, for high 7, they behave the same

* Could use studies like this to motivate ion species during the early physics
program

* Next steps
* Assess veto performance under more realistic conditions

 More species
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