Progress on double spin asymmetry, g_1^p , g_1^n **projection study**

Win Lin Stony Brook University

ePIC Collaboration Meeting 07/17/2025

Center for Frontiers in Nuclear Science

Motivation and Method

Spin composition:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q + L^g$$

Quark-Parton Model:

$$\Gamma_1^{p(n)} = \int_0^1 g_1^{p(n)} dx = \frac{1}{12} \left[+(-)a_3 + \frac{1}{3}a_8 \right] + \frac{1}{9}a_0$$

$$a_0 = \Delta u + \Delta d + \Delta s \equiv \Delta \Sigma$$

$$a_3 = \Delta u - \Delta d = \left| \frac{g_A}{g_V} \right|$$

$$a_8 = \Delta u + \Delta d - 2\Delta s$$

Bjorken sum:

$$\Gamma_1^p(Q^2, x) - \Gamma_1^n(Q^2, x) = \sum_{\tau > 0} \frac{\mu_{2\tau}^{p-n}(\alpha_S)}{Q^{2\tau-2}}$$

Motivation and Method

$$g_1 = \frac{F_2}{2x(1+R)}(A_1 + \gamma A_2)$$

$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$A_2 = \frac{2\sigma^{\mathrm{TL}}}{\sigma_{1/2} + \sigma_{3/2}}$$

$$A_{\parallel} = \frac{\sigma_{\downarrow\uparrow} - \sigma_{\uparrow\uparrow\uparrow}}{\sigma_{\downarrow\uparrow} + \sigma_{\uparrow\uparrow\uparrow}} \qquad A_{\perp} = \frac{\sigma_{\downarrow\Rightarrow} - \sigma_{\uparrow\Rightarrow}}{\sigma_{\downarrow\Rightarrow} + \sigma_{\uparrow\Rightarrow}}$$

$$\gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}} \qquad D = \frac{y(2-y)(2+\gamma^{2}y)}{2(1+\gamma^{2})y^{2} + (4(1-y)-\gamma^{2}y^{2})(1+z^{2})}$$

$$d = \frac{D\sqrt{4(1-y) - \gamma^2 y^2}}{2-y} \qquad R$$

$$\eta = \frac{4(1-y) - \gamma^2 y^2}{(2-y)(2+\gamma^2 y)}$$

$$R \equiv \frac{\sigma_L}{\sigma_T}$$

$$\xi = \frac{\gamma(2-y)}{2+\gamma^2 y}$$

Motivation and Method

$$g_1 = \frac{F_2}{2x(1+R)}(A_1 + \gamma A_2)$$

$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$A_2 = \frac{2\sigma^{\mathrm{TL}}}{\sigma_{1/2} + \sigma_{3/2}}$$

$$\gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}} \qquad D = \frac{y(2-y)(2+\gamma^{2}y)}{2(1+\gamma^{2})y^{2} + (4(1-y)-\gamma^{2}y^{2})(1+z^{2})}$$

$$d = \frac{D\sqrt{4(1-y) - \gamma^2 y^2}}{2-y} \qquad R$$

$$\eta = \frac{4(1-y) - \gamma^2 y^2}{(2-y)(2+\gamma^2 y)}$$

$$R \equiv \frac{\sigma_L}{\sigma_T}$$

$$\xi = \frac{\gamma(2-y)}{2+\gamma^2 y}$$

Analysis procedure

Parameterization for A₁

• A_1^p and A_1^n calculated from: <u>Doi: 10.2172/824895</u>

•
$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{3}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p \qquad P_p = -0.028 =$$

- Parameterization at $Q^2 = 2.88 \text{ GeV}^2$
- Data points are at various Q^2 with majority < 5 GeV²

• all F_2 's are taken from <u>JAM22</u>

 $\pm 0.004 \qquad P_n = 0.86 \pm 0.02$

 A_1^p from ep DIS

•
$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$\bullet \quad \delta A_{\parallel,\perp} = \frac{1}{\sqrt{N}P_e P_N}$$

•
$$\mathscr{L} = 10 \text{ fb}^{-1}, P_e = P_p = 70\%$$

- Data split evenly between A_{\parallel} and A_{\perp}
- Statistical uncertainty only, correction not yet applied

 A_1^p from ep DIS

•
$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$\bullet \quad \delta A_{\parallel,\perp} = \frac{1}{\sqrt{N}P_e P_N}$$

•
$$\mathscr{L} = 10 \text{ fb}^{-1}, P_e = P_p = 70\%$$

- Data split evenly between A_{\parallel} and A_{\perp}
- Statistical uncertainty only, correction not yet applied

EIC Early Science

	Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polarization
YEAR 1	e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A
YEAR 2	e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS
YEAR 3	e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/or LONG
YEAR 4	e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/or LONG
YEAR 5	e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/or LONG
		Note: the eA lun	ninosity is per nucleo	n	

• Can be extracted from
$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{3}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_2^n$$

Or directly measured double spectator tagging:

Ŋ

* EPIC 25.05.00 Sim.

0.01 < y < 0.95

 $Q^2 \ge 2, W^2 \ge 4$

• Can be extracted from
$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{3}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_2^n$$

Or directly measured double spectator tagging:

Currently a simple tracking algorithm based on hit per plane is used

• Can be extracted from
$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{3}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_2^n$$

Or directly measured double spectator tagging:

Currently a simple tracking algorithm based on hit per plane is used

 ${}^{10^3} \boxed{=} C_{\rm eff} = \frac{N_{\rm tag}(x_{\rm gen}, Q_{\rm gen}^2)}{N_{\rm gen}(x_{\rm gen}, Q_{\rm gen}^2)}$ 0.891 0.667 0.848 0.859 0.838 Q^2 (GeV/c²)² 10² 10 ⊨ 10^{-3} 10⁻² 10^{-1} Х $C_{\rm pur} = \frac{N_{\rm gen+tag}(x_{\rm gen}, Q_{\rm gen}^2)}{N}$ 10^{3} $N_{\rm tag}(x_{\rm gen}, Q_{\rm gen}^2)$ Q^2 (GeV/c²)² 10² 10 ⊨ 10⁻³ 10⁻² 10⁻¹ Х * EPIC 25.05.00 Sim.

0.01 < y < 0.95

 $Q^2 \ge 2, W^2 \ge 4$

11

•
$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$\bullet \quad \delta A_{\parallel,\perp} = \frac{1}{\sqrt{N}P_e P_N}$$

$$A_1(x,Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

•
$$\mathscr{L} = 8.65 \text{ fb}^{-1}, P_e = P_n = 70\%$$

Statistical uncertainty and model uncertainties only

$$A_1(x,Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

$$\delta A_{\parallel,\perp} = \frac{1}{\sqrt{N}P_e P_N}$$

$$A_1(x,Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta A_{\perp}}{d(1 + \eta\xi)}$$

•
$$\mathscr{L} = 8.65 \text{ fb}^{-1}, P_e = P_n = 70\%$$

Statistical uncertainty and model uncertainties only

EIC Early Science

	Species	Energy (GeV)	Luminosity/year (fb-1)	Electron polarization	p/A polarization
YEAR 1	e+Ru or e+Cu	10 x 115	0.9	NO (Commissioning)	N/A
YEAR 2	e+D e+p	10 x 130	11.4 4.95 - 5.33	LONG	NO TRANS
YEAR 3	e+p	10 x 130	4.95 - 5.33	LONG	TRANS and/or LONG
YEAR 4	e+Au e+p	10 x 100 10 x 250	0.84 6.19 - 9.18	LONG	N/A TRANS and/or LONG
YEAR 5	e+Au e+3He	10 x 100 10 x 166	0.84 8.65	LONG	N/A TRANS and/or LONG
		Note: the eA lum	ninosity is per nucleo	n	

g_1^p and g_1^n

- $A_1 \approx g_1/F_1$ with F_1 calculated from <u>JAM22</u>

- Statistical uncertainties only

g_1^p and g_1^n

- $A_1 \approx g_1/F_1$ with F_1 calculated from <u>JAM22</u>

What's new?

Inclusive electron reconstruction

Current	available reconstruction	n in EICF
Algorithm	Q^2	Inela
Electron (E)	$2E_0E_e(1+\cos\theta_e)$	$1 - \frac{E_{e}}{2}$
Jacquet-Blonde (JB)	$\frac{p_{t,h}^2}{1\!-\!y}$	
Double-Angle (DA)	$\frac{4E_0^2}{\tan(\frac{\theta_e}{2})(\tan(\frac{\theta_e}{2})+\delta_h/p_{t,h})}$	$rac{\delta_h}{ an(rac{ heta_e}{2})}$
Sigma (Σ)	$\frac{E_e^2 \sin^2 \theta_e}{1\!-\!y}$	$\overline{\delta_h + E_e}$
E-Sigma $(e\Sigma)$	Q_E^2	$\overline{4E_0}$

$$p_{t,h}^2 = (\sum_h p_{x,h})^2 + (\sum_h p_{y,h})^2 \qquad \qquad \delta_h = \sum_h E_h - p_{z,h}$$

Electron Finder Library

- MC info to pair track and cluster
- TruthID (associate hit to MC) for eID
- Assume first MC outgoing electron is

the scattering electron

Electron Reconstruction (Truth ID)

* EPIC 24.03.1 Sim. ep 18x278 GeV

Energy from tracks vs from clusters (ep)

* EPIC 24.03.1 Sim. ep 18x278 GeV

Energy from tracks vs from clusters (en)

* EPIC 25.05.0 Sim. eHe3 10x166 GeV

Energy and Track Resolution

HFS reconstruction

Apply QA cuts

Electron Reconstruction (Truth ID) - after cuts

* EPIC 24.05.0 Sim. ep 18x278 GeV

Electron Method Bin Efficiency

											1
										0.5	
								0.5	0.682	1	00
							0.455	0.802	0.674	0.4	0.9
						0.793	0.761	0.728	0.764	0.625	
					0.65	0.754	0.832	0.796	0.693	0.615	8.0
				0.588	0.851	0.859	0.804	0.731	0.621	0.66	
			0.4	0.868	0.821	0.791	0.732	0.7	0.524	0.333	 0.7
		0.8	0.878	0.843	0.845	0.735	0.634	0.402	0.446	0.125	
	0.824	0.821	0.891	0.837	0.713	0.616	0.458	0.273	0.2	0.111	 0.6
0.607	0.871	0.866	0.692	0.612	0.544	0.425	0.317	0.203	0.094	0.136	
0.809	0.73	0.688	0.665	0.621	0.521	0.369	0.241	0.18	0.116		 0.5
0.771	0.767	0.618	0.523	0.385	0.245	0.128	0.137	0.133			0.0
0.698	0.612	0.495	0.403	0.311	0.172	0.157	0.128				
0.657	0.625	0.503	0.44	0.343	0.216	0.16	0.061				0.4
0.715	0.634	0.477	0.332	0.182	0.104	0.095					0 0
0.645	0.507	0.347	0.203	0.109	0.105						0.3
0.492	0.272	0.182	0.15								
0.361	0 186	0 138	0 147								 0.2
0.103	0 111	0.073	0.111								
0.006	0.083	0.070									 0.1
0.090	0.003										
			I								0
10) ⁻²				10	$)^{-1}$				1	
v	/										
	۱										

* EPIC 24.05.0 Sim. ep 18x278 GeV

26

* EPIC 24.05.0 Sim. ep 18x278 GeV

Recon. Method Lookup Table

Kinematic reconstructions	quantity	Reco	Truth	Response (2D)	Purity/bin migration	detector acceptance-only corrected	Unfolding/full correction
(electron,JB, DA,sigma, e-sigma)	Q2	yes	yes	yes	optional	good to have	optional
	Х	yes	yes	yes	optional	good to have	optional
	У	yes	yes	yes	optional	good to have	optional
	dQ2/Q2						
	dx/x						
	dy/y						
	e' energy	yes	yes	yes	optional	optional	
	e' theta	yes	yes	yes	optional	optional	
	HFS (E-pz)	yes	yes	y	optional	optional	
	HFS (pT)	yes	yes	yes	optional	optional	
Event level							
	E-pz (e'+HFS)	yes	yes	yes	optional	optional	
	E/p for calorimeter	yes	yes	yes	optional	optional	
	Calo clusters	yes					
Observable of interest							
	e.g., t, etc.	yes	yes	yes	yes	yes	optional
Detector specific variables	Depends						
PID quantities:	add when it comes						

This list is not and should not be frozen but a living document for analyzers. And this should be adapted to each analysis and experts (conveners, ACs) can request to add things to check

Example list of variables/quantities for PWG to

Kinematic reconstructions	quantity	Reco	Truth	Response (2D)
(electron,JB, DA,sigma, e-sigma)	Q2	yes	yes	yes
	Х	yes	yes	yes
	У	yes	yes	yes
	dQ2/Q2			
	dx/x			
	dy/y			
	e' energy	yes	yes	yes
	e' theta	yes	yes	yes
	HFS (E-pz)	yes	yes	y
	HFS (pT)	yes	yes	yes
Event level				
	E-pz (e'+HFS)	yes	yes	yes
	E/p for calorimeter	yes	yes	yes
	Calo clusters	yes		
Observable of interest				
	e.g., t, etc.	yes	yes	yes
Detector specific variables	Depends			
PID quantities:	add when it comes			

This list is not and should not be frozen but a living document for analyzers. each analysis and experts (conveners, ACs) can request to add things to ch

Kinematic reconstructions	quantity	Reco	Truth	Response (2D)	Purity/bin migration	detector acceptance-only corrected	Unfolding/full correction	
(electron,JB, DA,sigma, e-sigma)	Q2	yes	yes	yes	optional	good to have	optional	
	X	yes	yes	yes	optional			
	У	yes	yes	yes	optional	lext step?		
	dQ2/Q2							
	dx/x				-	Refine electron kine	ematic reconstr	ruction
	dy/y							
	e' energy	yes	yes	yes	optional s://doi.org/10.1016/j.nima.2023.168563			
	e' theta	yes	yes	yes	optional	Weight data for pola	arized DIS?	
	HFS (E-pz)	yes	yes	y	optional	$\Lambda \oslash D^q$	$y,g \rightarrow h$	
	HFS (pT)	yes	yes	yes	optional	$1 + \lambda D(v) - \frac{\Delta \otimes D^{-1}}{2}$		
vent level						F_{UU}^h	7	
	E-pz (e'+HFS)	yes	yes	yes	optional			
	E/p for calorimeter	yes	yes	yes	optional	https://doi.org/10.1	<u>016/j.nima.202</u>	3.1685
	Calo clusters	yes				Cyptomotic 0	-	
bservable of interest						Systematic?		
	e.g., t, etc.	yes	yes	yes	yes	Radiative correction	ו?	
etector specific variables	Depends							
ID quantities:	add when it comes							

each analysis and expens (conveners, ACS) can request to add things

Kinematic reconstructions	quantity	Reco	Truth	Response (2D)	Purity/bin migration	detector acceptance-only corrected	Unfolding/full correction
(electron,JB, DA,sigma, e-sigma)	Q2	yes	yes	yes	optional	good to have	optional
	Х	yes	yes	yes	optional		
	у 402/02	yes	yes	yes	optional	lext step?	
	dy/y				_	Refine electron kine	matic reconst
	dv/v						
	e' energy	Ves	Ves	Ves	optional		
	e' theta	yes	yes	yes	s://doi.org/10.1016/j.nima.2023.168563	Weight data for pola	rized DIS?
	HFS (E-pz)	yes	yes	v	optional		$e \rightarrow h$
	HFS (pT)	yes	yes	yes	optional	$1 + \lambda D(v) - \frac{\Delta \otimes D^{q_2}}{2}$	
Event level						F_{III}^h	
	E-pz (e'+HFS)	yes	yes	yes	optional		
	E/p for calorimeter	yes	yes	yes	optional	https://doi.org/10.10	016/j.nima.202
	Calo clusters	yes				Systematic?	
Observable of interest						Cystematic:	
	e.g., t, etc.	yes	yes	yes	yes	Radiative correction	?
Detector specific variables	Depends						
PID quantities:	add when it comes						Thar

each analysis and experts (conveners, ACS) can request to add things

Slide++

