Nuclear Imaging Through Coherent Exclusive Vector Meson Production Exclusive/Diffractive/Tagging PWG

Maci Kesler

Advisors: Zhangbu Xu and Rongrong Ma Collaborators: Ashik Ikbal, Kong Tu, Thomas Ullrich

July 14 - 18, 2025

Critical measurement: exclusive vector meson (VM) production in scattering

- $\bullet\,$ Probe to gluon density \rightarrow precisely see structure $\rightarrow\,$ saturation
- Deflection of VM measures spatial distribution of gluons

- Distribution of momentum transfer (*t*):
 - Fourier conjugate to impact parameter
 - Reflects the spatial profile
- Gluon imaging

Goal

What does this diffractive pattern tell us?

- $\bullet\,$ Height of peak \propto gluon density
- Larger nucleus ightarrow closer first minimum: $\Delta t \propto 1/R^2$

What does the transform tell us?

- Central peak is core of nucleus where gluon density is highest
- Indicates how sharply gluon density drops off near nuclear edge

Measurements of the t distribution encounter 2 primary challenges:

• Limited resolution in measuring *t*

- Peaks and valleys washed out
- Mainly momentum resolution of outgoing electron (blue circles)
 - Scattered very far backward \rightarrow emerges at small angle
 - Tiny angular error \rightarrow large p_T error

Measurements of the t distribution encounter 2 primary challenges:

• Overwhelming incoherent background

- Black dashed curve
- Detector can suppress some incoherent production (red stars)

• Reconstruct *t* from exclusive VM production

$$t = (P_A - P_{A'})^2$$

- To access t: need complete final state
 - Cannot measure $P_{A'}$
 - For heavy nuclei \rightarrow stays within beam envelope
 - Tiny momentum change + tiny angular deflection

• We know 4-momenta of *e*, *A*, *e'*, and *VM*

$$e + A \rightarrow e' + A' + VM$$

 $P_{A'} = P_e + P_A - P_{e'} - P_{VM}$

• Method E (exact, MC): delivers true t

 $t = (P_{VM} + P_{e'} - P_e)^2$

• Con: Subtract large incoming/outgoing momenta to get longitudinal component of $t \rightarrow$ small error/inaccuracy has large effect on t

$$rac{\sigma_t}{t} = rac{(t_{ ext{measured}} - t_{ ext{true}})}{t_{ ext{true}}}$$

Maci Kesler (KSU)

July 14 - 18, 2025

• Method A (approximate): Assume small scatting angle $(P_{A_{//}} \approx P_{A_{//}'})$ and incoming e/ion along beamline $(p_T = psin\theta \approx 0)$

$$t = \left[\mathbf{p}_T(e') + \mathbf{p}_T(VM)\right]^2$$

- Used extensively at HERA
- Con: underestimates true t, valid only for small t and small Q^2

• Method L: corrects P_{A'} using true invariant mass

$$\begin{aligned} P_{A'}^{\text{corr}} &= [p_{\text{x},A'}, p_{\text{y},A'}, (p_{A'}^+ - p_{A'}^-)/2, (p_{A'}^+ + p_{A'}^-)/2] \\ t_{\text{corr}} &= (P_A - P_{A'}^{\text{corr}})^2 \end{aligned}$$

- Improvement to method A
- Con: Only applies to coherent events

9/19

Measure projection of $|t|_{\hat{n}}$ along the normal direction (\hat{n}) of the electron scattering plane

- Eliminate momentum resolution contribution from the outgoing electron
- Only need to measure the electron directions, not their momenta

Our Method

EIC UG & ePIC Collaboration Meeting

July 14 - 18, 2025

Define $q_x = \sqrt{|t_x|}$ to be in $\hat{x} = \hat{n} \times \hat{p}_e$ direction

ullet Cut wedge of angle θ_{\max} from $\hat{\textit{n}}\text{-direction}$ ($q_y \rightarrow$ projected VM)

• Eliminates most of the q_x component (e' direction)

The Model

Form Factor:

$$F(q=\sqrt{t})=rac{4\pi
ho_0}{Aq^3}\left[\sin(qR_A)-qR_A\cos(qR_A)
ight]\left(rac{1}{1+a^2q^2}
ight)$$

 ρ_o : nuclear density, A: atomic number, R_A : nuclear radius, q: = \sqrt{t} , a: range of Yukawa potential

Fourier-Bessel Transformation:

$$ilde{F}(b) = rac{(2\pi)^{3/2}}{\sqrt{b}} \int_0^\infty \sqrt{F(q)} J_{1/2}(bq) q^{3/2} dq$$

Maci Kesler (KSU)

EIC UG & ePIC Collaboration Meeting

July 14 - 18, 2025

Convolute with Gaussian

Maci Kesler (KSU)

EIC UG & ePIC Collaboration Meeting

2D Distributions

EIC UG & ePIC Collaboration Meeting

Maci Kesler (KSU)

Model Results

 \bullet Using the projected VM momentum and a $\pi/12$ wedge cut

- We see a significant improvement!
- Con: loss of statistics

Maci Kesler (KSU)

EIC UG & ePIC Collaboration Meeting

Simulation

• Sartre simulation for diffractive phi production

- eAu 18x110 GeV
- $\phi \to K^+ K^-$

2D transverse plane after running through simulation

Results

- New technique shows promising results
 - Projection $(|t_{\hat{n}}|)$
 - Wedge cut $(heta_{\max})$
- To do:
 - Add BeAGLE simulation to analysis
 - Separate coherent and incoherent events
 - Continue with correcting
 - Transformation

Backup Slides

Method A Derivation

Start with method E: Conservation of 4-momenta

$$\begin{array}{rcl} P_{e} + P_{A} &=& P_{e'} + P_{A'} + P_{\rm VM} \\ P_{A'} &=& P_{e} + P_{A} - P_{e'} - P_{\rm VM} \\ t &=& (P_{A} - P_{A'})^{2} \end{array}$$

$$t = (P_e + P_{\rm VM} - P_{e'})^2$$

Assume small scatting angle for incoming/outgoing ion: $P_{A_{//}} \approx P_{A_{//}}$

$$t = [p_T(A) + p_{//}(A) - p_T(A') + p_{//}(A')]^2$$

= $[p_T(A) - p_T(A')]^2$

Assume incoming e/ion traveling along beamline: $p_T = p \sin \theta \approx 0$

$$t = [p_T(A) - p_T(e) - p_T(A) + p_T(e') + p_T(VM)]^2$$
$$t = [p_T(e') + p_T(VM)]^2$$

Method L Derivation

Lightcone variables:

$$p_{\pm} = p_E \pm p_z$$

 $p^2 = p_+ p_- - p_T^2 = m^2$

Correct outgoing ion: $P_{A'} = (p_x, p_y, p_z, p_E)$

$$p_{+} = p_{E} + p_{z}$$

$$p_{-} = p_{E} - p_{z}$$

$$p_{+} = (m^{2} + p_{T}^{2})/p_{-}$$

$$p_{-} = (m^{2} + p_{T}^{2})/p_{+}$$
(2)

$$P_{A'}^{
m corr} = [p_x, p_y, (p_+ - p_-)/2, (p_- + p_+)/2]$$

(1)

Future Plan

- Utilize transversely polarized e⁻ beams
 - e⁻ spin is perpendicular to its momentum
- Exploit decay pattern of VM wrt \hat{n}
 - Determine the fraction of coherently produced VMs

Coherent Events

- If e⁻ spin flips:
 - Spin of VM aligns with \hat{n}
 - Expect $\cos 2\phi$ modulation if we project momentum of VM decay daughter onto VM spin direction

Future Plan

- If e^- spin does not flip:
 - No preferred direction of VM spin
 - Expect a flat ϕ distribution

Incoherent Events

• VM spin expected to be random wrt \hat{n}

Result:

- ullet Fraction of coherent events (case when e^- flips spin) is $<\cos 2\phi>$
- Assume probability for e^- to flip spin is C
- Fraction of total coherent events is given by $\frac{\langle \cos 2\phi \rangle}{C}$
- Can then obtain $|t|_{\hat{n}}$ distributions for coherent VM production
 - Extract spatial distribution of gluons in nucleus

