

Design update for the Cymbal detector

ePIC / EIC Collaboration meeting
July 18th 2025

Audrey on behalf of CEA Saclay

What is Cymbal?

Cylindrical Micromegas Barrel Layer

Part of the tracking system

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

Who is Cymbal?

Francesco Bossù

Alain Delbart

Fabien Janneau

Seraphin Vetter

Maxence Vandenbroucke

Irakli Mandjavize

Audrey Francisco

Dylan Neff

Samy Polcher Rafael

Yann Bedfer

Pierre Chatagnon

Damien Neyret

Type of gaseous detector (MPGD family)

Anatomy of a micromegas detector

Type of gaseous detector (MPGD family)

Anatomy of a micromegas detector

Type of gaseous detector (MPGD family)

Anatomy of a micromegas detector

Type of gaseous detector (MPGD family)

Maintenance access

Design evolution to accommodate maintenance needs

Initial layout

Coupled to TOF

12 radial sections, individually removable and independent of GST and PST

Previous design

32 module: 8 modules in $\phi \times 4$ modules in z

- $R_{min} = 55 \text{ cm}; R_{max} = 60.5 \text{ cm}$
- Overlaps in ϕ and in z for hermeticity
- ❖ 1024 readout channels/module
- **❖** 32K readout channels

Module dimensions

Z = 67 cm

R*phi = 48 cm

Active zone dimensions

Z = 59 cm

R*phi = 46 cm

Expected performances

- Spatial resolution: < 300 (500) μm in Z (r*phi)</p>
- ❖ Time resolution ~20ns
- \clubsuit Efficiency $\geq 98\%$
- ❖ Material budget ~0.5% X0

Updated design

48 module: 12 modules in $\phi \times$ 4 modules in z

- $R_{min} = 56 \text{ cm}; R_{max} = 61.5 \text{ cm}$
- Overlaps in ϕ and in z for hermeticity
- ❖ 768 readout channels/module
- **❖** 36K readout channels

Module dimensions

Z = 67 cm

R*phi = 34 cm

Active zone dimensions

Z = 59 cm

R*phi = 32 cm

Expected performances

- Spatial resolution: < 300 (500) μm in Z (r*phi)</p>
- ❖ Time resolution ~20ns
- \clubsuit Efficiency $\geq 98\%$
- ❖ Material budget ~0.5% X0

Considered layouts

Slats

Alternating tiles

Keeping zone: [560,615] mm Flat modules (slats) Slat thickness: 8 mm

Delta radius in-out modules: 9 mm

Tiles tilt angle = 5 degrees
Tile dimensions= 330x670 mm²

Keeping zone: [560,615] mm Tile curvature radius: 572 mm

Tile thickness: 9 mm

Delta radius in-out modules: 10 mm

Tiles tilt angle = 4 degrees
Tile dimensions= 340x670 mm²

Keeping zone: [560,610] mm Cylindrical modules (tiles)

Tile thickness: 9 mm

Delta radius in-out modules: 11 mm

Sectors delta radius 23 mm
Tile dimensions= 340x670 mm²

Considered layouts

Slats Fish scale

Alternating tiles

Many options are possible and we have several design propositions

Mechanical support constrain is required to converge towards a final configuration

Keeping zone: [560,615] mm Flat modules (slats) Slat thickness: 8 mm

Delta radius in-out modules: 9 mm

Tiles tilt angle = 5 degrees
Tile dimensions= 330x670 mm²

Keeping zone: [560,615] mm Tile curvature radius: 572 mm

Tile thickness: 9 mm

Delta radius in-out modules: 10 mm

Tiles tilt angle = 4 degrees Tile dimensions= 340x670 mm²

Tile thickness: 9 mm

Delta radius in-out modules: 11 mm

Sectors delta radius 23 mm
Tile dimensions= 340x670 mm²

Services and FEB

- 32 module: 8 modules in φ times 4 modules in z
- Overlaps in φ and in z for hermeticity
- 1024 readout channels/module
- 32K readout channels
- 128 FEBs (2x32 on each side 4/tile)

FEB+cooling plate (15 mm thick ?) ~100 mm Connector Connector Connector Connector mm Salsa Salsa Salsa Salsa 60+20 LDO LDO ComBrd connector ComBrd connector LDO LDO VTRX+ GBT

weight estimates

- Raw tile ~1 kg
- FEB PCB ~0.3 kg
- Cooling plate+fluid tube ~0.3 kg (rough estimate for 3 mm Al cooling plate +

copper tubes, thermal simulations to be done)

On each side of the barrel ~40 kg Cymbal ~110 kg

Started the design of the cooling plate (T2K- HA TPC)

- Negative pressure water cooling system
- 7 W/FEB (**8.5 for CyMBaL**), cooled at ~25°C +/- 0.2 °C with ~3 l/minute 18°C water flow in 6 ID/8 OD copper tubes
- Confirmed with complete thermal simulations (heat dissipation, steady state temperatures, pressure drops, water flow, ...)

More compact design for CyMBaL

Minimal figures (?) to be confirmed

for / by simulations (mm)

- FEB PCB : 3.2
- Component height:
- Compressed thermal foam : 1
- Plain cooling plate : 3
- Pipe outer radius (enough flow ?): 3

minimal FEB+cooling plate thickness
13.2 mm ?

Mechanics + services

Space enveloppe for Cymbal?

- How much space is there for services?
- How much space for FEB at the edge?
- How do we support the FEBs

Maintenance:

• How do we slide each section? How do we deal with services (cable chains?)?

Coupling to TOF:

How are we attached to TOF?

New design → new mechanical interface and service routing (and electronics cooling?) from Cymbal coupled to TOF

Need to clarify who is responsible for which part of these designs

→ Need for a close collaboration CyMBAL-TOF- mechanical design (BNL and Purdue) for the new support structure design

Impact of size modification on readout design

Initial design	Z	Phi
Ext. dimensions (cm)	67	48
Active area. dimensions (cm)	59	46
#channels / pitch (cm)	576 / 1,02	448 / 1,02
# SALSA	9	7
# FEB		4

Not enough space for 4 FEB in the updated design

Space for front-end cards is limited

→ Limit on the number of electronic channels Several options:

Updated design (same pitch)	Z	Phi
Ext. dimensions (cm)	67	33
Active area. dimensions (cm)	59	31
#channels / pitch (cm)	512 / 1,15	256 / 1,2
# SALSA	8	4
# FEB		3

Updated design (Z precision)	Z	Phi
Ext. dimensions (cm)	67	33
Active area. dimensions (cm)	59	31
#channels / pitch (cm)	576 / 1,02	192 / 1,6
# SALSA	9	3
# FEB		3

Tiles: $32 \rightarrow 48 (+50\%)$

FEB: 128 → 144 (+12,5%)

SALSA: 512 → 576 (+12,5%)

Role of Cymbal

- Provide redundancy hit points for track reconstruction
- Provide "fast" hits for pattern recognition. Challenges:
 - streaming readout
 - High backgrounds
 - Long MAPS integration time

Latest performance requirements (@Frascati)

Latoot poriorina	noo roquironnonto (@	raccati)
Envelopes	Defined: 5 cm radial space Module dimension set	
Space resolution	R*phi ≤ 500 μm Z ≤ 300 μm	 Constraint: 1k ch/module Optimisation of pitch for the z coordinate. Select hits in time
Time resolution	~ 20 ns	Optimize drift field, gas, hit selection,
Efficiency	≥98%	For MIPs
Material budget	~0.5% X0	Similar to CLAS12 technology

Plots to support these numbers?

Role of Cymbal

MPGD's role:

- Provide redundancy hit points for track reconstruction
- Provide "fast" hits for pattern recognition. Challenges:
 - streaming readout
 - High backgrounds
 - Long MAPS integration time

Latest performance requirements (@Frascati)

	Envelopes	Defined: 5 cm radial space Module dimension set			
	Space resolution	R*phi ≤ 500 μm Z ≤ 300 μm	Constraint: 1k ch/moduleOptimisation of pitch for the z coordinate.Select hits in time		
	Time resolution	~ 20 ns	Optimize drift field, gas, hit selection,		
•	Efficiency	≥98%	For MIPs		
	Material budget	~0.5% X0	Similar to CLAS12 technology		

Plots to support these numbers?

- * spatial resolution -> on which coordinate?
- * timing resolution -> what's the impact of going higher than 20ns?
- * How much degradation is acceptable at large angle (Lorentz angle)?
- * precise occupancy, background levels?
- * Any interest in having 2 layers instead of 1?

Examples of other micromegas detectors

TPOT (2 x1D-MM)

Pixelised MM on COMPASS with GEM pre-amplification

Curved tiles on CLAS 12 (resistive strips, 0.5% X0)

Also ATLAS NSW, MCube, PicoSec, P2, etc...

Readout pattern: pitch and pattern

Resistive layer: resistivity and pattern

Size of the drift gap

Gas

Pre-amplification

. . .

Electronics

Tile configuration

Number of layers System layout, access

Need to consider the whole detector system: Micromegas module + readout + environment (allocated mechanical space, services and maintenance needs)

CyMBAL: Cylindrical micromegas tracking layer

So far our R&D focused on the 2D design Reaching a stage where we need to take critical decisions

Recent change in configuration (12 sectors + TOF coupling)

→ opportunity to rethink the required performances for Cymbal

Configuration change is the opportunity to rethink the required performances for Cymbal Inputs are needed:

- from **mechanics** to design the module structure and layout
- from physics and tracking simulations to steer our focus towards relevant performances

Many different options are possible and considered - experience of several detector designs with very large array of focuses → tailor the detector to ePIC needs

We need inputs and to collaborate more closely with : mechanical engineers and reconstruction + physics WG

Back-up

Gas	Ar-iC ₄ H ₁₀	Ar-iC ₄ H ₁₀	Ne-C ₂ H ₆	Ne-C ₂ H ₆	$\mathrm{NeC_{2}H_{6}CF_{4}}$	NeC ₂ H ₆ CF ₄
%	96-4	89-11	95-5	89-11	79-11-10	59-11-30
n_{ep}	28.4	36.9	13.5	14.6	19.7	19.6
G_0	4100	3700	14500	14000	6400	7400
cluster size cl_{sz}	3.0	2.4	3.4	2.9	2.1	2.2
TOT (ns)	210	195	187	182	171	179
RESOLUTIONS:						
$Position(\mu m)$	70	62	80	80	50	50
Timing (ns)	17.1	12.3	17.9	16.5	8.8	8.6

when adding 10 % CF_4 . Adding 30 % does not improve it anymore since the contribution of the SFE16 starts to dominate.

Performances of a Micromegas detector, at full eeciency for various gas mixturess read out electronics : SFE166 beam conditions: 10 GeV or p.

LV powering the Front-End readout electronics

Contact: Irakli Mandjavidze (Irfu)

Same location As a patch panel?

128 FEB

FEB components and their power consumption

Component	Vin V	Current mA	Power mW	Comment	
Salsa 1		4.000	1 200	15 mW/ch	
Salsa 2	1.2				
Salsa 3	1.2	1 000			
Salsa 4					
lpGBT	1.2	420	500	Overestimated	
VTRX+	1.2	20	25		
VIKA+	2.5	70	175		
LDO Salsa 1-2	1.5	2 000	600	LDO / Salsa to	
LDO Salsa 3-4	1.5			avoid hotspots?	
LDO lpGBT/VTRX+	1.5	440	130		
LDO VTRX+	2.8	70	20		

As close to FEB as possible: 1 cm - 3 m

Tim Camarda & Gerard Visser

50-70% Power efficiency of DC/DC converters

Circuit	V _{IN}	I _{IN}	Reg	V _{out}	I _{out}	P _{out}	P _{LOSS}	P _{EFF}
SALSA ASIC	3.0	2A	LT3033 (1)	1.2V	2A	2.4W	3.6W	50%
SALSA ASIC	3.0	2A	LT3033 (2)	1.2V	2A	2.4W	3.6W	50%
LpGBT	3.0	700mA	LT3033 (3)	1.2V	700mA	850mW	1.3W	53%
VTRX	3.0	50mA	LT3033 (3)	1.2V	50mA	60mW	90mW	50%
VTRX	3.0	105mA	LT3042 (4)	2.5V	105mA	275mW	60mW	78%
Input Reg	24V	870mA	bPOL48V	3.0V	4.86A	14.6W	4.38W	70%

Total ~6.8 W (8.5 W with 25% safety margin)

→ CyMBaL Barrel total power of ~1.1 kW (+ extra from DC/DC)

CyMBaL tiles à la CLAS12

- Design of the tile very similar to CLAS12 BMT detector (project led by CEA and taking data since 2017)
 - ► B=5T solenoid, total active area ~4m²
 - Light cylindrical tiles (~0.4% X₀ per layer)
- Build on past experience by upgrading CLAS12 design for ePIC needs
 - Bending of the tile (larger radius)
 - Upgrade from 1D to 2D readout

Low-X₀ 2D micromegas R&D

- ► **R&D for very-low material budget** (0.2% X₀) 2D Micromegas
- ► Replacing FR4 (PCB) with **light kapton foil** stretched over carbon frame
- Investigating optimal 2D readout and resistive patterns + combinations
 - Varying resistivity, shape, pitch, etc..
- Less support = stronger constraints for production
- ► Testing small flat prototypes (12x12 cm²)

Testing of low-X₀ micromegas

- Tested several small Micromegas and μRWELL prototypes
- Looking for optimal performances (cluster size, uniformity of charge sharing, resolution)
- Beam test of about one week in June '23 in Mainz at MAMI
- Results from TB dominated by multiple scattering but 1mm strips design shows interesting performances

Testing of updates for the serigraphy/bulk processes

