

Track reconstruction and vertexing – status and ongoing work

Barak Schmookler, Shujie Li, Ernst Sichtermann (on behalf of the Tracking CC WG)

Central Tracker

Full tracking system: Silicon Vertex
Tracker (SVT) + MPGDs + AC-LGAD TOF
detectors

Inner Barrel (IB)

- Two curved silicon vertex layers
- One curved dual-purpose layer
- 0.05% X/X0 per layer

Outer Barrel (OB)

- One stave-based sagitta layer
- One stave-based outer layer
- 0.25/0.55% X/X0 per layer

SVT

Electron/Hadron Endcaps (EE, HE)

- Five disks on either side of the Interaction Region
- 0.25% X/X0 per layer

MPGDs and AC-LGADs provide

- additional hit points for track reconstruction (<150 μm, 30 μm)
- fast timing hits for background rejection (10-20 ns, 30 ps)

65 nm MAPS technology (ALICE ITS3) O(20x20 μm²) pixel size Total active area of 8.5 m²

- The current track reconstruction scheme first builds seeds (tracklets) in the SVT using a loose set of cuts.
- The track seeds are then projected to the other tracking layers and additional SVT, MPGD, TOF hits are attached.
- The final track parameters are saved at the reconstructed track's point-ofclosest approach to the beamline (z-axis) following track smoothing.

Tracking performance – single particle events

 $-3.5 < \eta < -2.5$

 $-1 < \eta < 1$

Source events

o Single pion+ event at fixed momentum uniformly distributed in polar angle

Observables

- o **Efficiency**: fraction of generated particles with a reconstructed track
- o **Resolution**: dp/p, theta, phi, DCAr
- Pull distributions: reconstructed resolution compared to reconstructed covariance matrix

Momentum resolution vs. requirements

 $-2.5 < \eta < -1$

Tracking performance – single particle events

Source events

o Single pion+ event at fixed momentum uniformly distributed in polar angle

Observables

- o **Efficiency**: fraction of generated particles with a reconstructed track
- o **Resolution**: dp/p, theta, phi, DCAr
- Pull distributions: reconstructed resolution compared to reconstructed covariance matrix

40

20

dp/p Resolution fit
(recon - initial)/initial

-0.80 < eta < -0.70 in eicrecon eta -1 to 1 2GeV

sigma=0.457382, err=0.0181962

Tracking performance – single particle events

Source events

o Single pion+ event at fixed momentum uniformly distributed in polar angle

Observables

o **Efficiency**: fraction of generated particles with a reconstructed track

o **Resolution**: dp/p, theta, phi, DCAr

o Pull distributions: reconstructed resolution compared to reconstructed

covariance matrix

Pull distributions

Pull distributions vary

between 1.1 and 1.5

Tracking performance – DIS signal events

Source events

o DIS events simulated with a minimum Q² threshold and beam-smearing effects applied

Observables

- Track multiplicity: number of reconstructed tracks per event
- o Track spectra: reconstructed eta distribution for tracks
- o **Efficiency**: fraction of generated particles with a reconstructed matched track
- o **Purity:** fraction of hits used in a track fit associated with a given generated particle

Reconstructed P_t distribution

Tracking performance – DIS signal events

Source events

o DIS events simulated with a minimum Q² threshold and beam-smearing effects applied

Observables

- o **Track multiplicity**: number of reconstructed tracks per event
- o **Track spectra**: reconstructed eta distribution for tracks
- o **Efficiency**: fraction of generated particles with a reconstructed matched track
- o **Purity:** fraction of hits used in a track fit associated with a given generated particle

Tracks w/ 100% purity should have resolution performance as found in single-particle studies

Purity

Real-seeded tracks

ePIC 25.05.0

Ongoing and future efforts

- Necessity and sufficiency of tracking layout
 - As has been shown, every SVT layer has a clear purpose
 - Need to demonstrate the optimal configuration of the outer tracker of MGPDs and TOF
- Tracking performance in the presence of beam-induced backgrounds and noise
 - Initial studies have been done on the impacts of beam-induced backgrounds
 - Ongoing effort to embed noise hits into the simulation
 - Plan to revisit seeding volume and CKF parameters when realistic background and noise are fully incorporated into the simulations

Tracking layer impact study

Motivation: study impact of a given tracking layer

Simulation setting: exclude hits from a given layer when doing track reconstruction

while keeping the geometry and materials in the DD4hep simulation

Example study: momentum resolution with a disabled **SVT Barrel layer** (L0 to L4)

Track reconstruction with realistic beam-induced backgrounds

Motivation: study how well our device and track finding and fitting perform in the

presence of backgrounds

Simulation setting: DIS (forced) + background merged events

- One 18x275 NC DIS event with $Q^2 > 1$ GeV²/c². (This is NOT the highest lumi configuration)
- Beam background at calculated frequency SR, electron Bremsstrahlung, Coulomb, Touschek, proton beam gas. 16

Preliminary results: Purity and Efficiency for DIS (forced) + background sample

18x275

No detector noise included yet

Very good purity except for tracks with less than 5 hits

for electrons.
Inefficiency
dominated by lowmomentum pions.

Vertexing and track projections workflow

Primary vertex reconstruction performance

Xin Dong Rongrong Ma Khushi Singla

 N_{MC} : number of MC charged particles originating from collision vertex within |eta| < 3.5 **Efficiency**: fraction of event with at least one reconstructed vertex

Track projections to the DIRC

Roman Dzhygadlo Matt Posik

6 GeV/c pi-

Several ongoing efforts

- Studying the effect of adjusting the material budgets near the BTOF and outer barrel MPGD layer on the track projection resolution at the DIRC
- Quantifying the impact of using BIC measurements on the track projection resolution at the DIRC
- Understanding better how material effects are incorporated into the track projection uncertainty estimation

Communication with Physics Working Groups (PWGs)

- Productive joint session between the Tracking WG and the PWGs on Wednesday afternoon.
- We determined a few action items:
 - PWGs will put tracking requirements in wide bins in QCD science context; this requires, for example, the combination with e.m. calorimetry in the case of the scattered electron in small-x collisions.
 - Tracking WG will develop baseline trackquality selections.
 - The PWGs and the Tracking WG will work together to determine the best set of physics observables to demonstrate the capabilities and sufficiency of the tracking layout

Session

Combined Tracking and Physics Observables and Detector Performance

(§ 16 Jul 2025, 13:30

Barak Schmookler
13:30 - 13:50
Dongwi H Dongwi 🥝
13:50 - 14:10
Barak Schmookler 🥝
14:10 - 14:15
Barak Schmookler et al. 🥝
14:15 - 14:45
Rongrong Ma
14:45 - 15:05
15:05 - 15:30

7/18/2025 21

Summary

- We have developed a mature framework for track reconstruction and primary vertexing.
- The Tracking WG has demonstrated the performance of the current tracking layout for single-particle and DIS signal events.
 - We plan to revise the tracking section of the pTDR by the end of the month to reflect the current status.
- Our ongoing efforts are focused on
 - 1. Demonstrating the sufficiency and necessity of the current tracking layout
 - 2. Studying the tracking performance under realistic running conditions
 - 3. Performing a systematic study of track projection resolutions
- Following the joint session, the Tracking WG and the PWGs will coordinate on completing several tasks.

7/18/2025 22