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AI in Nuclear Physics - Grand Challenges*
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Harness the physics program of the Electron lon Collider (EIC) -

> AI/ML will help guarantee maximum science output from the EIC

Realize the science potential of FRIB

> A variety of AlI/ML tools will be developed to address specific needs including beam generation, event
characterization, detector response, experiment optimization, and data analysis

Event Reconstruction in Nuclear Physics

> Al techniques for reconstruction of tracks in time projection chambers at FRIB, and for heavy ion
collisions

Improve Tracking Algorithms

> Al/ML to significantly improve tracking at all NP accelerator facilities

Particle Identification
> AI/ML to complement existing Monte Carlo methods for PID

> Gamma-Ray Energy Tracking Array (GRETA): Al/ML to reconstruct the pat of multiple gamma rays from
measured interaction positions and deposited energies

*From Town Hall Meetings 2019/2020

Next generation QCD
experiments like EIC can
integrate Al from the start

Community activities /
perspectives related to EIC

[] 2020 ASCAC Subcommittee on
Al for Science

[J EIC Yellow Report (Nucl. Phys. A

1026 (2022) 12247)

[1 2023 NSAC Long-Range Plan
LJ AI4EIC (C. Allaire, C. Fanelli, ...,
T. Horn, et al., Comp. & Softw. For
Big Science 8 (2024) 1, 5)




AT /ML is Ubiquitous
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Gen Al is revolutionizing how we work, communicate, and innovate across nearly every

Generative Al field. Can create new content—text, images, code, or even data



The AT4EIC WG

e Al/ML is becoming ubiquitous also in NP. As shown in M. Diefenthaler’s report on the ePIC SW & Computing WG,
Al is playing a key role in empowering data processing, analysis and enabling autonomous experimentation and

The mission of the Artificial Intelligence (Al) Working Group is to develop and maintain connections to the data science community, and engaging
with the rapidly evolving Al/ML (Machine Learning) toolset that may impact the realization of the EIC science mission. The Al will organize events to

educate and assist the EIC community in utilizing AI/ML techniques in the area of detector design and controls, simulations, data readout and

e The entry point, , is structured in such a way to track all AI4EIC events (workshops, hackathons, tutorials,
meetings). Projects and Al/ML software repositories are included in a resource-hub webpage. The website contains
also a living review of Al-related papers for the EIC science and also features spotlights on impactful works.

e Alis a rapidly evolving field. AI4EIC acts as both a catalyst and an incubator for ideas, demonstrating how
cutting-edge Al techniques can be applied to advance EIC science. E.g.,

o How can generative Al contribute to the EIC science?

o How do we deal with uncertainty quantification?


https://www.eicug.org/content/wg.html
http://eic.ai

Generative AI for EIC: Cherenkov

Ongoing collaboration
with the ePIC DIRC WG

1. High-Fidelity Fast Simulation:
Developed generative models capable of producing photon hit distributions with fidelity comparable
to Geant4, but at a fraction of the computational cost—critical given the expense of tracking optical

photons through complex geometries.
J. Giroux, M. Martinez, CF "Generative Models for Fast Simulation of Cherenkov Detectors at the Electron-lon Collider."
arXiv:2504.19042 (2025). — submitted Machine Learning: Science and Technology [link]
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2. Enhanced Particle Identification:
Achieved competitive PID performance across the full detector phase space, with significantly

reduced computational time—O(10us/track)—compared to traditional methods
CF, J. Giroux, and J. Stevens. "Deep (er) reconstruction of imaging Cherenkov detectors with swin transformers and normalizing flow
models." Machine Learning: Science and Technology 6.1 (2025): 015028. [link]

3. Towards Foundation Models for Cherenkov Detectors: Transformer-based
Recently introduced a unified model architecture capable of performing both reconstruction and

fast simulation, enabling simultaneous achievement of (1) and (2) within a single framework.
J. Giroux, CF, "Towards Foundation Models for Experimental Readout Systems Combining Discrete and Continuous Data."
arXiv:2505.08736 (2025). [link]

https://qithub.com/orgs/aideic/repositories
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https://arxiv.org/abs/2504.19042
https://iopscience.iop.org/article/10.1088/2632-2153/ada8f4/meta
https://arxiv.org/abs/2505.08736
https://github.com/orgs/ai4eic/repositories

Generative AI for EIC: RAG Agent

What is Retrieval Augmented Generation (RAG)?

° Access up to date information without explicitly training of LLM.
° Reduce “Hallucination” of LLM.

° Grounding LLM to truth to increase reliability by providing citations.

(source code) https://qithub.com/aideic/EIC-RAG-Project

(agent) https://ragsdeic-qideic.streamlit.app/RAG-ChotBot

Why need RAG for Large Scale Physics Experiments?

° EIC large scale experiment (e.g., EICUG ~1,500 users, ePIC 180 institutions)

. Regular updates to documents, Wiki etc; Tot document size ~ scale of experiment
° Newbies may take months to get to know the full experimental details

<
s

“Ingestion” of data NS
. Creation of vectorized knowledge base : , 3
° Every node below influence RAG performance

° 200+ recent arXiv papers on EIC (since 2021)

“Inference”

Chunking

T —— ° Given a prompt compute similarity index to most similar vectors in VectorDB
UnStructured VectorDB ° Use LLM to further narrow down and summarize the finding

User prompt Response

Template RAG based
. ChatGPT3.5 [ Summary

Embedding
Model Meta Data

INSTRUCT 7o Report
tuned 2

K. Suresh, et al "Towards a RAG-based summarization for the Electron lon Collider." JINST 19.07 (2024): C07006.
ATLAS (LHC) also working in this direction. See ChATLAS, D. Murnane et al, presented at AI4EIC, 6


https://www.eicug.org/content/map.html
https://github.com/ai4eic/EIC-RAG-Project
https://rags4eic-ai4eic.streamlit.app/RAG-ChatBot
https://indico.bnl.gov/event/19560/contributions/83300/attachments/51306/87732/Chatlas%20Overview.pdf

Generative AT for EIC: RAG Agent Community Effort

e AI4EIC Collaboration with Ramaiah University, Data Science (India)

o B.Sc. thesis by Tina J Jat (supervised by Tapasi Ghosh, in collaboration with AI4EIC) — This
project advances prior OpenAl-based work by developing a fully open-source RAG pipeline
for the EIC, using LLaMA 3.2/3.3 and mxbai-embed-large. With a local vector database, it
ensures data privacy, avoids external sharing, and remains cost-effective.

e Now EIC RAG works with open source models within olamma. We are working on moving
towards agentic workflow

e Topical Meeting: a topical meeting will take place between July 30, 2025, 11am EST
( )

o Workfest@AI4EIC2025: A workfest on Al agents for EIC will take place during the AI4EIC
workshop at MIT, October 27-30, 2025.

(source code) https://qithub.com/qideic/EIC-RAG-Project

(agent) https://rags4eic-aideic.streamlit.app/RAG-ChatBot



https://indico.bnl.gov/event/28948/
https://github.com/ai4eic/EIC-RAG-Project
https://rags4eic-ai4eic.streamlit.app/RAG-ChatBot

ML-enabled Kinematics Reconstruction (with
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Deep Inelastic Scattering (DIS) is governed by the four-momentum transfer squared of the exchanged
boson @2, the inelasticity y, and the Bjorken scaling variable x.
higher-order QED

corrections at the
lepton vertex

Initigl State Radiation,

T

Final State Radiation

HES
P
Bomn diagram
Small These kinematic variables are related via Q? ='s - x y, where s is the square of the center-of-mass energy.
q-P DIS

s=(k+P?, Q=-¢, y=,—p, ad z=Q%(sy).  Kinematics

CF, J. Giroux 2024 Mach. Learn.: Sci. Technol. 5 015017

Lrot. = LReg. + YL Phys. + BLNF.

Event-Level Uncertainty Quantification

Learn the Posterior over the weights

‘Bayes Block (15,64) ‘ B

‘Bayes Blodk (64,125} ‘ Access epistemic uncertainty through sampling MNF [1] layers

— )
[

(SRS [ Spw—

Learn the regression transformation

Access aleatoric as a function of regressed output [2]

Constrain the physics

. 1 P
Lphys. = ~ ) log Qi — (log s; + log &; + log 4 )
- 1

CF, J. Giroux Mach. Learn.: Sci. Technol. 5 015017 (2024)

See foundational work by:
M. Diefenthaler et al., EPJ C 82.11 (2022): 1064; Arratia et al., NIM-A 1025 (2022): 166164



ATl for Detector Design

Performance optimization for e = wi

Al for Design used for several sub-detector systems

(right) Performance Optimization for a Scintillating Glass EM
Calorimeter for Detector 2

e  Beyond pure geometrical optimization

e  2-objectives (multi-objective) optimization

e  Genetic algorithms and Bayesian optimization

(AI4EIC proceeding)
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A project to develop a framework for a scalable and distributed
Al-assisted detector design and optimization for high complexity
problems is also underway

i e  Advance SOTA of MOO
% e Development of suite of data science tools for
interactive navigation of Pareto front

e Leverage and adapt cutting-edge workload
management systems

https://aideicdetopt.pythonanywhere.com.

Performance Optimization for a Scintillating Glass EM Calorimeter for Detector 2

J. Crafts, R. Fatemi. Horn, D. Kalinkin, JINST 19 C05049

M. Diefenthaler et al (AID2E Collaboration) 2024 JINST 19 C07001 MOO, Distributed, Scalable


https://ai4eicdetopt.pythonanywhere.com/

AT for Tracking and Event Classification

o Quasi-real photoproduction measurements involve tracking % 15 % 15
scattered electrons at small angles relative to the beamline in a 2 =
€ 1S
backward electron tagger *2 16 4210
° Due to high flux of electrons from bremsstrahlung process, the § §
tracking detector systems experience high occupancy % 5 % 5
2 2 Cut on primar
e  GNN-based Object Condensation methods use for track building: F = C|gssiﬁcpatlion_ryesp¢nse
0 = 0-! ANOUIN :
o Avoid “looping” over high order of hit combinations 0 5 10 15 0 5 10 15

Predicted Momentum [GeV] Predicted Momentum [GeV]

S. Gardner et al 2024 JINST 19 C05052 (AI4EIC proceeding)

e Transformed FOM
Transformed purity
Data FOM

° Normalizing Flows for domain adaptation when identifying A hyperon " <t S
events

Used GNN to classify signal/background events
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Representation
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Signal Fit cut on classifier output

R. Kelleher et al 2024 JINST 19.06 C06020 (AI4EIC proceeding)



ATl applications for real time event processing

ML on FPGA
e Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors hls 4
reumcsemmin Identify D/B hadrons with real-time ML
- ° Topology of D/B decays
e Monitor collision vertex INTT S
e  Feedback for improvement () | Activation Function p.rl. S
Very high p+p collision rate: ~3MHz
Low rate of rare signals: ~150Hz (beauty for eg) B/’
sPHENIX Tracking: ~
= MVTX + INTT(fast) Limited DAQ trigger bandwidth: ~15 kHz S
- TPClslow) (or 0.5% of p+p collisions) ctable beam: Graph Gonvolutions Graph @nvolutions
x,y)~100um  DCA_XY
No effective conventional triggers available . J. Kvapil et al, JINST 19.02 (2024):

C02066.
e Machine learning on FPGA for event selection at JLab

GEM TRD tracks

Al algorithms on FPGA:
° GNN for pattern recognition

° DNN/LSTM track fitting
e  DNN for PID
b VAE for calorimetry B convolutional ~ dense
— - encoder decoder
F. Barbosa et al, IEEE Trans. Nucl. Sci. 70 (2023) 6, L —— Input data

960-965 GEM TRD Calo reconstruction

S. Furletoyv, JINST 17 (2022) 06, C06009 (AI4EIC

proceeding) L - .
See other contributions at the joint session between SRO XIl and AI4EIC,


https://indico.bnl.gov/event/24286/

DOE Recognition of AT4EIC

e The Al Working Group within the EICUG has
gained notable recognition in recent DOE
Funding Opportunity Announcements,
underscoring the growing impact of our efforts on
supporting the future of EIC science with Al/ML

e Highlighted in two consecutive FOAs
DE-FOA-0002875 (2023) and DE-FOA-0003845
(2025) both reference the AI4EIC workshops,
emphasizing our role in addressing how Al/ML
might contribute to advance the research, design,
and operation of the future EIC.

e Recognition reflects the DOE’s alignment with
EICUG’s vision to integrate Al/ML with
experimental data analysis and high-performance
computing in nuclear physics.

DE-FOA-0002875 (deadline: Jan 11, 2023; award ceiling $2M/year)

Artificial Intelligence and Machine Learning For Autonomous Optimization and Control of
Accelerators and Detectors

NP held a one-day roundtable on “Machine Learning and Artificial Intelligence for NP
Accelerator Facilities” on January 30, 2020, with focus on discussing opportunities in AI/ML for
improving efficiencies of accelerator operations of NP facilities. Additional information on the
workshop and copies of presentations can be found at: https://science.osti.gov/np/Research/ai.
An NP community workshop at TINAF in March of 2020 considered priority research

opportunities in AI/ML. Also, an NP community computational science workshop in September
2022 was held to identify future directions in computational nuclear physics by a combination of
high-performance computing combined with AI/ML and experimental data. And in October of
2022, an Al for EIC workshop was held to address how Al might contribute to advance research,
design and operation of the future EIC. More information on these workshops and meetings can
be found in the Reference section below.

DE-FOA-0003845 (deadline: Jan 14, 2025; lab award ceiling $3.5M/year)

Artificial Intelligence and Machine Learning Applied to Nuclear Science and Technology

2022 identified future directions in computational nuclear physics by a combination of high-
performance computing combined with AI/ML and experimental data. And in October 2022 and
October 2023, Al for EIC workshops were held to address how AI might contribute to advance

research, design and operation of the future EIC. More information on these workshops and
meetings can be found in the Reference section below.

These mentions affirm our trajectory and provide momentum for continued cross-disciplinary collaboration and future

funding opportunities.


https://science.osti.gov/-/media/grants/pdf/foas/2023/SC_FOA_0002875.pdf
https://grants.gov/search-results-detail/356713

AT4EIC Worksho S average 200+ participants

e 5 workshops organized or co-organized by the AI4EIC WG. In the last 12 months
we contributed to organize the joint session with the Streaming Readout at the
Streaming Readout Workshop SRO-XII held in Tokyo Dec 2024, and we are
currently organizing the 4th AI4EIC workshop that will be held at MIT supported by
the Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

Artificial

Streaming Readout Workshop SROXIL . A |/ E | (2024) \Y/ |T/|A| F| (2025) - Intelligence for

the Electron lon

o % Collider (AI4EIC)
t Lo B2
4E I C S

ﬂ

Oct 27-29, 2025

40 contributions overall, with 1:4 on AI/ML in SRO.

Scientific Organizing Committee

https://eic.ai/workshops
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https://eic.ai/workshops

2025 ATAETC Workshop @MIT/TIAIFI

October 27-30, 2025

2 sessions per day - AI4EIC
2025 will feature invited talks
Al/ML for ePIC and Beyond and selected abstract

e Wenliang (Bill) Li (Mississippi State University), Rachel Montogomery (U. of Glasgow), Anselm Vossen (Duke contributions.
University)

Abstract submission (1 page
I Calibration, Monitoring, and Experimental Control in Streaming Environments max, figures can be inc|uded)
¢ Yeonju Go (Brookhaven National Lab), Torri Jeske (Jefferson Lab) iS now open.

Scientific Organizing Committee Al/ML for Accelerators Proceedi ngs will be

* Kevin Brown (Brookhaven National Lab), Brahim Mustapha (Argonne National Lab) pUbIIShed in the Journal Of
Instrumentation.

Abhay Deshpande, Stony Brook, BNL

BeqRachmsn, Stahfard Al/ML for Data Analysis and Theory

Workfest: the workshop will
host satellite events such as
a focused workfest on Al

agents for EIC applications,
organized by the AI4EIC

Or Hen, MIT .
Al/ML in Production, Distributed ML Work|ng group.
Phiala Shanahan, MIT

Cris Fanelli, W&M
* Brandon Kriesten (Argonne National Laboratory), Simonetta Liuti (University of Virginia)
David Lawrence, JLab

Malachi Schram, JLab . .
Trends in Data Science

Marco Battaglieri, INFN

* Philip Harris (Massachusetts Institute of Technology), Yaohang Li (Old Dominion University)
Mike Williams, MIT

* Kishan Rajput (Jefferson Lab), Ray Ren (Brookhaven National Lab)

Tanja Horn, CUA

Torre Wenaus, BNL

indico.bnl.gov/event/Al4EIC2025



http://indico.bnl.gov/event/AI4EIC2025

ATAEIC Publications

2022*

Using machine learning for particle identification in ALICE
tukasz Kamil Graczykowski et al 2022 JINST 17 C07016

v Open abstract iew article ApoF

Artificial Intelligence for imaging Cherenkov detectors at the EIC
C. Fanelli and A. Mahmood 2022 JINST 17 C07011

~ Open abstract View article FPDOF

High performance FPGA embedded system for machine learning based tracking

T. Xuan et al 2022 JINST 17 C07003

~ Open abstract =]View article APDF

Machine learning on FPGA for event selection
S. Furletov et al 2022 JINST 17 C06009

~ Open abstract

Design of detectors at the electron ion collider with artificial intelligence
C. Fanelli 2022 JINST 17 C04038

~ Open abstract View article FPDF

Al for Experimental Controls at Jefferson Lab
T. Jeske et al 2022 JINST 17 C03043

~ Open abstract View article #PDF

Frontiers in computing for artificial intelligence
T.S. Humble et af 2022 JINST 17 C03037

~ Open abstract =view article FPDOF

Machine learning for track reconstruction at the LHC
L.-G. Gagnon 2022 JINST 17 C02026

~ Open abstract View article fAPDF

Accelerator and detector control for the EIC with machine learning
T. Britton and B. Nachman 2022 JINST 17 C02022
+ Open al ew article #AproF

EIC detector overview
DMW. Higinbotham 2022 JINST 17 C02018

~ Open abstract View article APOF

*(not full list; 20+)

2024*

R. Kelleher, A. Vossen

Normalizing flows for domain adaptation when identifying A

hyperon events (AI4EIC proceeding, JINST19 C

G. Matousek, A. Vossen

Photon classification with Gradient Boosted Trees at CLAS12 (AI4EIC
T .

S. Gardner, R. Tyson, D. Glazier and K. Livingston
Obje ndensation for track building in a backward electron
tagger at the EIC (A4EIC

G. Gavalian on behalf of the CLAS12 Collaboration

Real-time charged track reconstruction for CLAS12
19 0

J.Craftetal

Performance optimization for a scintillating glass electromagnetic
calorimeter at the EIC (AI4EI jing, JINST19 C05049)

K. Suresh et al

Towards a RAG-based Summarization Agent for the Electron-lon
Collider (

C. Fanelli et al

M. Diefenthaler et al

Al-Assisted Detector Design for the EIC (AID(2)E) (AI4EIC
/ST19 CO7001. 2024)

T. Jeske et al.

Hydra: Computer Vision for Data Quality Monitoring
719 C120

D. Lawrence et al.

ML-based Calibration and Control of the GlueX Central Drift
Chamber (AI4EIC ceedir T19C

M. Karwowska et al.
Particle identification with machine learning from incomplete data
in the ALICE experiment

2024

Home > Computing and Software for Big Science > Article

Artificial Intelligence for the Electron
lon Collider (AI4EIC)

Review | Open access | Published: 15 February 2024

Volume 8, article number 5,(2024) Cite this article

Download PDF + @ You have full access to this open access article

C. Allaire, R. Ammendola, E.-C. Aschenauer, M. Balandat, M. Battaglieri, ). Bernauer, M.
n, E. Cisbani, E. W. Cline, S.

Das Dean, W. Deconinck, A. Deshpande, M. Diefenthaler, R. Ent, C. Fanelli 89, M. Finger,
M. Finger)r.,E.Fol,... P.Zurita - Showauthors

14 citations (INSPIRE-HEP)

AI4EIC 2025 Abstract submission now open
(1 page max, figures can be included)

https://indico.bnl.gov/event/28082/abstracts/

https://eic.ai/living-review



https://eic.ai/living-review
https://indico.bnl.gov/event/28082/abstracts/

Spotlight on AI/ML for EIC Science

ARTIFICIAL INTELLIGENCE FOR THE ELECTRON ION
COLLIDER

e This spotlight features a curated
selection of the most influential
papers per year that showcase 2025
cutting-edge applications of Al and &5 «

Acosta, R. Whitehill

ML to EIC SCience. SPOTLIGHTS ON IPoor:nCtocllnc;uedr-bused diffusion models for the Electron-
e These works represent milestones AI/ML

in the integration of modern EIC SCIENCE

PAPER SPOTLIGHT

computational techniques into
experimental and theoretical efforts
within the EIC community. We ey A,
highlight these papers for their VP Sy
innovation, impact, and potential to =, " -
guide future research in EIC.

R. Milton, S. J. Paul, B. Schmookler et al.

Design and simulation of a SiPM-on-tile ZDC for the
future EIC, and its performance with graph neural

networks

A arti

e A sub-committee within AI4EIC is
appointed to select the spotlights

Full list can be found here:
https://eic.ai/spotlight



https://eic.ai/spotlight

Impact of AT4EIC Initiatives: Examples

The seeds planted through AI4EIC initiatives continue to bear fruit over the years, giving rise to follow-up research and publications

nnnnnnn

dataset

AI4EIC hackathon
(ML for Cherenkov
detectors)

Inspired development of
ML algorithms for

Cherenkov detectors (2025)

CHEP

Mach. Learn.: Sci. Technol. 6 015028

proceeding
(2022)

(2024)
RAGA4EIC Project
AI4EIC hackathon RAQ
Physics event cla cation using Large Language Models ChatBot

(LLM for EIC INaT
Science) proceeding (2024)

=

JINST 19.07 (2024): CO7006.
(2023) https://github.com/ai4eic/EIC-RAG-Project


https://iopscience.iop.org/article/10.1088/2632-2153/ada8f4

Summary

Active Engagement and Events
o  Overall organized four AI4EIC workshop (+tutorials and hackathons), plus a joint event with Streaming Readout in
December 2024; and also contributing to joint workshops with APS DNP
o  AI4EIC workshops have become a pivotal venue in the NP community, recognized by federal agencies in their
Funding Opportunity Announcements.
o Aworkshop at MIT/IAIFI is upcoming (October 27-30, 2025) http://indico.bnl.gov/event/AI4EIC2025

Successful Hackathon Events
o  AI4EIC Hackathons have achieved remarkable success, fostering innovation and collaboration and new research

papers. Software infrastructure developed by AI4EIC utilized by ePIC hackathon.

Promoting AlI/ML Literacy
o  Continued efforts to enhance Al/ML literacy within the EIC community, resulting in:
m  Editor of 23 JINST proceedings for the first and third workshops. More proceedings to come this year.
m 2 hackathons documented in peer-reviewed papers.
m 1 community paper on Computing and Software for Big Science published in 2024 with 14 citations.
m  Other AI4EIC contributions: APS DNP workshops; lecture series for summer school students (HUGS)

Topical Meetings and Innovative Projects
o  Covering cutting-edge topics and projects actively involving the AI4EIC community.
m  See, e.g., the repository on RAG-based summarization and upcoming meeting on July 30.

https://eic.ai/



http://indico.bnl.gov/event/AI4EIC2025
https://eic.ai/
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Fast Simulation at EIC - hpDIRC

J. Giroux, James, M. Martinez, and CF. "Generative Models for Fast
Architectures: Normalizing Flows (NF), Continuous Normalizing Flows (CNF),  Simulation of Cherenkov Detectors at the Electron-lon Collider.”
Conditional Flow Matching (CFM), Denoising Diffusion Probabilistic Models _
(DDPM), Score Based Generative Models (SB) . A S

---- FastSim.

arXiv:2504.19042 (2025).

e Suite of SOTA Generative Models — Compare modern SOTA generative
algorithms in the space of DIRC simulation

e Hit-Level Learning — Model conditioned on kinematic parameters (|p|,8)

e Agnostic to Photon Yield — Ensure model independence from photon yield

e Abstract away Fixed Input Size — Address limitations with discrete o |

100 200 0 50 100 150 200

distributions; data preprocessing transform DIRC readout (row, col) to (x,y) in - ’ X (mm) ¥ (mm)
mm and uniformly smear over PMT pixels
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— Geant4

— Geant4 1
—— FastSim. 10 —— FastSim

10 —— FastSim.
18] = 6 GeV/c : 16| = 6 GeV/c

|| = 6 GeV/c .
6=30 ) 6=95" 2 6=150
<q0-3
10 50 100

50 100 150 100
Time (ns) Time (ns) Time (ns)

Simulation is fast - O(0.5)Us per hit (effective) (hpDIRC standalone sim)




Foundation Models - hpDIRC

e Foundation Models capable of generalizing to multiple task . Giroux and C Faneli "Towards Foundation Models for

Experimental Readout Systems Combining Discrete and
Continuous Data." arXiv:2505.08736 (2025).

o Pre-trained backbone structure (transformer based)

e [ine-tune to different tasks

Kinematic Embedding

o Generation Spatial Embedding Temporal Query

o Classification

Decoder Block
(CMHCA)
v

o Noise Filtering
Decoder Block

e Represent hits in tokenized space

spatial — {|p],0,S0S,,p1,...,0n, EOS,}
time — {’p_)‘, 9, SOSt, tl, “ s ,tn, EOSt} \Generator Head

All code is open source and pre-trained
models are provided.



https://github.com/wmdataphys/FM4DIRC

Foundation Models - hpDIRC

e Fast simulation through next token prediction 6.0 GeV/c Pions

FastSim. —— Geant4

e Directly learns variability in photon yield
o Model conditioned on kinematic parameters (|p]|,
0)

o No external modeling of photon yield required

e Class conditional (particle type) generation through a .
Mixture of Experts (MoE) Time (ne) T

Pion Fast Simulated Hit Patte Pion Geant4 Hit Pattern

zoon-' . zooﬂ[‘;’
- NS RN
.

=

1

gvam& ﬁﬁu:h‘*
SRS TR e

100 200 300 100 200 300
X (mm) X (mm)

100 200

— Geant4
—— FastSim.

|p| = 6 GeV/c
5°

|| = 6 GeV/c
= =150

100

Time (ns) Time (ns) Time (ns)

Simulation is fast - 0(0.02)s per track (effective) (hpDIRC standalone sim)



Deep(er)RICH: Transformer-based PID

CF, J. Giroux, J. Stevens. “Deep(er)RICH"
Machine Learning: Science and Technology 6.1 (2025): 015028.

Swin Transformer
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e
Flatten + Concat [
Position  Legend B - o
\(J Conv/BN/SELU [L onv/SELU/Dropout [i} Deconv MJ Dropout [ i] Cony
e Individual tracks do form “images” in optical e Hierarchical Vision Transformer (Swin) - encoder style
boxes feature extraction

o Sparse point representations o  Windowed attention - higher throughput

e Possibility of overlapping hits e Combine information through CNN - utilize skip
o  Same x,y - different times connections for different resolutions
o Construct these as images as FIFO e Inject kinematics as concatenated information to DNN

o  Tends to be low percentage of overlap



Takeaways

e  Simulation
o  Order of magnitude faster than Geant4 - we have shown our algorithms (not FM) run extremely well on CPU
o  Simulation is easily usable by users without GPU - PID should use GPU for efficiency

o  Possibility to enable time-imaging - we can simulate PDF’s on the fly on GPU

o Increased performance shown at GlueX
o  Also shown increased performance at hpDIRC (very preliminary)

o  Compute wise - Geometric LUT is cheap - but so are we on GPU - mainly depends if we can outperform

e  Foundation Model
o  Everything under one architecture - bulk of model remains identical - changes in final layer
o  More computationally intensive than previous models for simulation - requires GPU
o  PID is still very cheap and fast

o  Possibility for noise filtering - possibility of applications to high rate environments such as in the dRICH



RAG4EIC

Methods to evaluate RAG’s performance
[ ]

e LLM as Judget

~

|Number of claims that can be inferred from given context|
| Total number of claims in the generated answer|

1. Faithfulness —

Faithfulness score =

2. Answer relevance —

#claims correctly responded
Answer relevance = I |

[#claims in given text|

3. Context relevance —

|# relevant unique refs|

|# refs retrieved|

\Context relevance =

J

Question
resolution at 2GeV from a MAPS ITS3 tracking layer

Response

What is the pixel size and expected momentum

* The pixe size of the MAPS ITS3 racking layer is 10 $\mu$m

<ARXIV_ID> </ARXIV_ID>
<ARXIV_ID> </ARXIV_ID>
<ARXIV_ID> </ARXIV_ID>
<ARXIV_ID> 1</ARXIV_ID>
<ARXIV_ID> </ARXIV_ID>
* The expected momentum resolution at 2 GeV from a MAPS ITS3 tracking layer is 2.5% to 15% of the initial
momentum <ARXIV_ID> </ARXIV_ID>
<ARXIV_ID> </ARXIV_ID>
Faithfulness Answer Context
relevance relevance

100%

50%

User asks a query

70%

Methods to improve RAG architecture

° Better chunking strategies. LaTeX Splitter, TWikiSplitter

Metadata based filtering.

[ ]
° Response Template fine-tuning. INSTRUCT tuning
[ ]

Model fine-tuning. Computationally costly.

\«,«r Ask LLM if mor

Query VecDB with user selected search settings

Get most similar vectors.

)

Arrange vectors with unigue arxiy links

ind question into respons

Render a

Check rendering Present markdown render to user

Question What are the dimensions of MAPS
detector used in EIC?

Response

¢ The MAPS detector used in the EIC has dimensions ranging from 3.67 cm to 43 cm, with a
sensor size of 10x10 cm <ARXIV. ID>[ t

2 . i
The ePIC MAPS electron endcap detector has a geometry parameter listed, and the ePIC

MAPS hadron endcap detector also has geometry parameters listed <ARXIV_ID>
r : e .

1
The ePIC MAPS vertex detector design can reach as low as 0.05, and the imaging layers of
MAPS sensors provide excellent position resolution <ARXIV_ID>
[http 2 1
The MAPS sensor used in the EICis based on low-mass, low-power consumption MAPS in
65 nm technology <ARXIV_ID>[" ]
The MAPS sensor used in the EIC is based on low-mass, low-power consumption MAPS in
65 nm technology <ARXIV_ID>[" ]

#of Faithfulness Answer Context Answer
Hallucination relevance relevance correctness
3/50 26% 62% 100% Qualitative

e  Towards Multimodal Agents: A multimodal Al assist in interpreting visual data, cross-referencing documentation, providing actionable

insights in real time...

[1] J. Saad-Falcon et al, ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems, arxiv:2311.09476v2


https://docs.ragas.io/en/latest/concepts/metrics/index.html
https://arxiv.org/pdf/2311.09476.pdf

Various RAG methods

e Naive RAG:

Predict

Retrieve

o Simple & Direct process

Rewrite RAG Rerank

o No refinement or optimization ‘ | N e

1 S
Demonstrate Fusion

o High throughput but accurate for complex queries. ‘ ‘ : Memety |-

o Use Case: Straight forward Q&A like shift info or look
up tables

e Advanced RAG:
o Adds Pre- and Post Retrieval accuracy (RAG4EIC)

Naive RAG Advanced RAG Modular RAG

o Pre Retrieval contains Routing logic, Query rewriting
and Query expansion

Figure 3: Comparison between the three paradigms of RAG

o Post Retrieval contains Reranking, summary and fusion e Modular RAG

strategy for cohesive response
o  Highly flexible and customizable with multiple interchangeable modules.

o Use Case: Document Databases
o  Enhanced by Graph RAG for structured, relation-aware retrieval.
o Introduces the idea of Agentic workflows

Y. Gao et al., Retrieval-Augmented Generation for Large Language o Use Case: Complex reasoning and decision making tasks.
Models: A Survey


https://arxiv.org/pdf/2312.10997

Better than RAG.. (Agentic RAG)
4

e Single Agent

o Asingle LLM agent orchestrates tasks and
leverages external tools for assistance.

o  Similar to Modular RAG where multiple tools can be
coupled to a Single LLM.

e Network

o  Multiple peer agents (Fine-tuned LLM) can
communicate and collaborate using shared/specific
tools.

o  However, need to have specialized agents and
model I/O bottleneck (with poor resource). Since
any agent can collaborate with any other agent

o Use case: During data taking agents monitor
different sub detector systems and share insights in
real time to raise alarm or report on data quality.

S'mgle Agent Network Supervisor

N

<§<>ﬁ<> $\U
0

Supervisor Agent

O

A central supervisor agent oversees and delegates
tasks to specialized agent.

Optimizes workflow, with minimal dependency when
adding new agents

Lower I/O bottleneck compared to Network setups but
have higher task latency

Use case: Coordinating tasks like beam alignment and
detector status.

H. Zhou et al., Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies,


https://arxiv.org/pdf/2502.02533v1
https://arxiv.org/pdf/2502.02533v1
https://arxiv.org/pdf/2502.02533v1

Better than RAG.. (Agentic RAG)

™ RAG4EIC Work in progress (K. Suresh et al)

The envisioned strategy for RAG4EIC is a hierarchical

agent

Hierarchical architecture, Open source Small Language  pums . .

Models (Llama3.2) with fine-tuning for agents. i — e Entire software stack housed within the
infrastructure

Langchain Toolkit for development

e Smaller models ideal for specialized
Reduced Memory footprint of VectorDB — dynamic tasks.
information retrieval from various sources.

Keyword Search Tool R3sssd Wiki Search Agent SSr 2 Supervisor Agent D g 111dicO Search Agent BEmd Meeting Data Parser

TWikiAPI Aggregator Agent Indico API

Deliver Final Response
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Similar sources

ChATLAS

Guidelines for Paper Submission

You can find below the guidelines for the preparation of your paper for its submission to the j.

Similar sources

Heavy lon Analysis Review Guidelines

page provides guidelines for analysis review and approval steps within the Heavy lon PA gr..
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Talk ot AI4EIC-2023
An Al Assistant for the ATLAS Collaboration



https://indico.bnl.gov/event/19560/contributions/83300/attachments/51306/87732/Chatlas%20Overview.pdf

The ongoing AT4EIC Project:
Retrieval Augmented Generation using LLM pipeline

o The Objective — Summarization tool with “relevant

I A pilot study — Ingestion citations” for within EIC.

e Framework built has to be scalable and fairly automated

Data loading Split in Chunks ;
. o PyPDF Reader to read texts from PDF
=] fm] fm) o files
EelEE = * Latexsplicer —tag based spliting o
=SE=ES Equations selected as an object in
® K« ns s as an 3
P m—) © [ : b,
( . ‘; O T e K
location as metadata while captions are
h f split in chunks — can create multi
200 recent ArXiv publications au
Source files and PDFs © upto 120 char chunks with 10 char
overlaps

| the Generic Workflow of building Traditional RAG

. Similar vectors
Vector
embeddings
PineConeDB

] Response y
User Prompt J Template g CI \ based
. L ’ summary

Talk ot AI4EIC-2023

A Large Language Model-based Assistant for the Electron lon Collder 30


https://indico.bnl.gov/event/19560/contributions/82240/

The ongoing AT4EIC Project:

RAG application and evaluation

Repository: https://qithub.com/aideic/EIC-RAG-Project
Web-Application: https://rags4eic-aideic.streamlit.opp/

<« (¢} O B nhtips;//ragsdeic-aideic:streamlit.app/RAG-ChatB: Pxd 0o 9

I Classic Metrics

AI4EIC - RAG QA-
ChatBot

AI4EIC-RAGAS4EIC A

Login or Signup.

RAG-ChatBot

Generate Questions
® Whatare the polarization parameters used to study J/y polarization in SIDIS at large PT?

s in question

Source Citation Frequency SCF = [umber of time guestion s source cltec]
Select VecDB and Properties 'y o ’ c . 1 ) b [Total queries|
Gathering info from Knowledge Bank for this query... T T TNumber of hallucinations|
Hallucination Frequency HF = ——reeies—
Vector DB
Hello! Here are the polarization parameters used to study J/y polarization in SIDIS at large PT:
PINECONE v
* The study of J/p polarization in large-PT semi-inclusive deep-inelastic scattering (SIDIS) at the Electron lon Collider (EIC) can help in getting
ooVl Mewic i i the J/ip formation , both at large z (high- and low-energy set-ups) and as a function of PT (at large energy)[1A].
Cosine similari e * Future measurements of transversely polarized A /~Ain SIDIS will potentially allow us to gain further insights and to distinguish between o YT S
osine similarity " i S . N i Metric Name Definition Score
different scenarios, to the of the J/ in SIDIS at large PT[27].
e tion of correctly rendered . §
Maxk 1 hope this helps to answer your question. Faithfulness R X 87.4% + ¢
€ onse in the markdown format
—
1 \e rieved c
3 120 ved context
Context
2. 1
Select Vector DB

Context Entity Recall —_— e 98.7% +

Measures releve
to the retrieve:

Measures corr

[ ] generated answer to the idea response

Check out the full trace of the pipeline in langsmith

Talk ot AI4EIC-2023
A Large Language Model-based Assistant for the Electron lon Collder



https://indico.bnl.gov/event/19560/contributions/82240/
https://smith.langchain.com/public/39b36dfc-a61c-4626-b811-ba9f4492912f/r/f42a4567-4bf6-4b55-8f21-0c6b18fe0a9d
https://github.com/ai4eic/EIC-RAG-Project
https://rags4eic-ai4eic.streamlit.app/

ELUQuant: Event-level UQ

CF, J. Giroux 2024 Mach. Learn.: Sci. Technol. 5 015017

['Tot. — £Reg. + '7£Phys. + 5£NF

Event-Level Uncertainty Quantification

Measured Input

Wl ; Ww ‘ Learn the Posterior over the weights

_ , Access epistemic uncertainty through sampling MNF [1] layers
izati Learn the regression transformation
. 1 1 s s 12 .

) |[p(W)) + log (21, |[W) — log q(z1; )]

) i A
Bayes Block (128,64) Access aleatoric as a function of regressed output [2]

<z,Q%y > <logoZ.logo},,logas >
Inferred Output

Lphys, = Z log (log s; + log &; + log 9;)

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).


https://github.com/wmdataphys/ELUQuant

Aleatoric

Y Bin DA Method DNN RMS Aleatoric Y Bin e Method DNNRMS Aleatoric Y Bin DA Method DNNRMS Aleatoric

(0.5,0.8) 0.147955 0.061922  0.057942 (0.5,0.8) 0.056694  0.044052  0.041349 (0.5,0.8) 0.060537 0.031194  0.034643
0.2,0.5) 0.134833 0.075418  0.061706 (0.2,0.5)  0.055787  0.037505  0.032280 0.2,0.5) 0.082115 0.053126  0.044249
(0.1,0.2) 0.145530 0.097903  0.071238 (0.1,0.2)  0.054219 0.033230  0.029640 0.1, 0.2) 0.098631 0.078143  0.061840
(0.05,0.1) 0.175290 0.132783  0.082945 (0.05,0.1) 0.053403  0.032501  0.029411 (0.05,0.1) 0.127276 0.109309  0.078276
(0.01,0.05)  0.252723 0.184589  0.115453 (0.01,0.05) 0.053470  0.032139  0.029431 (0.01,0.05)  0.158493 0.147391  0.120546

Table 2: Aleatoric RMS Comparions - X Table 3: Aleatoric RMS Comparison - Q2 Table 4: Aleatoric RMS Comparison Y
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ELUQ vs DNN

. Ratio to Truth Error Comparison - x Ratio to Truth Error Comparison - Q2 0s0 Ratio to Truth Error Comparison - y
0.40 £
e Aleatoric Component e Aleatoric Component e Aleatoric Component
Epistemic Component ’ e Epistemic Component e Epistemic Component
e RMS (DNN) : e RMS (DNN) : e RMS (DNN)

Uncertainty

2 2
c c
© ‘©
t £
) (7]
= ]
c c
=2 o]

e The RMS (MNF) roughly coincide with that of DNN as seen previously
e The RMS (DNN) for x and y is larger at low y given the distributions are broader
e The epistemic is systematically smaller than aleatoric component.

e Atlargey, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN



All Methods Compared

-~ RMS (ELUQ) RMS (Jacquet-Blondel) RMS (ELUQ) +- RMS (Jacquet-Blondel)
RMS (DNN) --+-- RMS (DA method) RMS (DNN) --+-- RMS (DA method)
-~ Total (ELUQ) RMS (electron method) -~ Total (ELUQ) RMS (electron method)
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e Atlowy, the RMS are typically larger due to “broader” distributions

DNN and MNF have smaller RMS over the whole y range compared to other methods (this was also the finding of
NIM-A 1025 (2022): 166164)

o  “Our method outperforms other methods over a wide kinematics range”

o “The RMS resolution for y and x increase at lower y, even for the DNN reconstruction. ... This results ... may

be attributed to further acceptance, noise, or resolution effects that deteriorates the measurement of the HFS”

— Reporting uncertainty at the level of the event for ELUQuant; RMS from other methods and also for ELUQuant for comparison with DNN



Leveraging Event-level Tnformation

Represented the average uncertainty ° Rem_ovmg events with Iarge_

at the event-level in this plot relative event-level uncertainty
(with respect to the network
prediction) improve the ratio to
truth and reduce inaccuracy

=
=

Notice these cuts do not use
any information at the ground
truth level

0.9

< Xpred/Xtrue >
5
o

e Bonus: this could be sensitive
to anomalies.

— In the plot above events with at least one among x,Q?, y
with a relative uncertainty larger than a threshold are removed —



Al-assisted Detector Design

Compute-intensive simulation pipelines

/’—5\
.,rr° N
I
l‘x
\ .Jl"‘ V4
—-— -
Design Parameters Objectives

|

Detector Reconstructed
Simulation Features
Accurate simulations of the passage of particles or

radiation through matter

Benefits from rapid turnaround time from
simulations to analysis of high-level
reconstructed observables

The EIC SW stack offers multiple features
that facilitate Al-assisted design (e.g.,
modularity of simulation, reconstruction,
analysis, easy access to design
parameters, automated checks, etc.)

Leverages heterogeneous computing

A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives

[ Provide a framework for an holistic optimization of the sub-detector system

(e.g., detector response, physics-driven, costs) subject to (iii) constraints




Al - a331sted Detector Design @EIC

M. Diefenthaler et al (AID2E Collaboration) 2024 JINST 19 C07001

Distributed, scalable!

Training dataset

(]

N Segment name Input data

for left-arm

SELECTION

SURROGATE DESIGH
/) MOBEE xCANDIDATE

left-arm

o HP for 3 ) Model for other]
objectives

DATASET

design parameters | Multi-Objective -
"~ obectives | Bayesian Optimization

Evaluation Container

Model for left-arm

‘ objectives

acquisition

PARETO FRONT d
UPDATE OBJECTIVES AT

DESIGN CANDIDATE

(i) Leverage cutting-edge workload
management systems capable of
operating at massive data and handle
complex workflows

(i) Advance state of the art MOO
complexity to accommodate a large
number of objectives and explore usage of (ii) Development of suite of data science tools
physics-inspired approaches for interactive navigation of Pareto front
(multi-dim design with multiple objectives)

e Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits
e Afractional improvement in the objectives translates to a more efficient use of beam time which will make up a majority of the cost of the EIC over its
lifetime


https://ai4eicdetopt.pythonanywhere.com/
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495

AID2E Applications

e Considering all the constraints as ePIC is in the process of finalizing engineering designs, we can select
those sub-detectors that still have tunable parameters

' ° B0 magnetic field map, distance between
dual-RICH Far-Forward layers, central location of tracker
1 e Mirror, sensor e  Momentum resolution, acceptance
v

placement, gas,

mlrror materlal (IO Wer BO detector 9

L+ ‘ costs material)... :3
e PID performance, w

costs, ...

V% > ﬂ}i combined function magnet

E. Cisbani et al 2020 JINST 15 P05009

e AID2E framework can support the design of a possible detector-2; it is also being used for other
compute-intensive tasks, such as alignment and calibration




Diffusion Models

“Diffusion model approach to simulating electron-proton scattering events”

e Denoising Probabilistic Diffusion Models (DDPM)
«—— zo Noising

0=0.0001 0.01

Denoising z7 Ty — Ty_q

10 gt

Po(l‘t—1|11)
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® |mage based representation of (NC) DIS events

0.0001

o  Center-of-mass energy representative of EIC s = (105 GeV)?
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o  Uniform pixelization of Cylindrical detector
e Pixel intensity represented as rescaled particle momentum
e PID represented through different channels (analogous to RGB image)

e Reconstruct high-level observables from generated images

Devlin, Peter, et al. "Diffusion model approach to simulating electron-proton scattering events."


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.110.016030

