

Report from the MC4EIC working group

EICUG meeting 2025

MC4EIC

Scope & Activities

- Follow up on progress of Monte Carlo Event Generators (MCEG) for EIC
- Coordinate/support validation MCEGs against relevant data
- Communicate with experimentalists on their needs

MC4EIC Workshops

- 2021: hosted by CFNS (remote)
- 2022: hosted by Fermilab (remote)
- 2024: Durham (in-person)
- 2025 July 9–11: JLab (hybrid)

[figure by P. Skands]

MC4EIC

Scope & Activities

- Follow up on progress of Monte Carlo Event Generators (MCEG) for EIC
- Coordinate/support validation MCEGs against relevant data
- Communicate with experimentalists on their needs

MC4EIC Workshops

- 2021: hosted by CFNS (remote)
- 2022: hosted by Fermilab (remote)
- 2024: Durham (in-person)
- 2025 July 9-11: JLab (hybrid)

[figure by P. Skands]

Event generators

General purpose event generators

- Aim to provide a full description of a collision event, ie. exclusive hadronic final states, using Monte Carlo methods
- Use perturbative QCD where applicaple, fill in with phenomenological models
- Main players:
 - Herwig (7.3.0) https://herwig.hepforge.org [Eur.Phys.J. C80 (2020) 452]
 - Pythia (8.315) https://pythia.org [SciPost Phys. Codebases 8-r8.3 (2022)]
 - Sherpa (3.0.1) https://sherpa-team.gitlab.io

Specialized event generators

- Matrix-element (ME) (hard-process) generators for higher perturbative accuracy and multiplicities: Madgraph5(_aMC@NLO), POWHEG(-BOX)
- Fixed-order codes: MCFM, NNLOJET, ...

[JHEP 12 (2024) 156]

General-purpose event generators

Classify event generation in terms of "hardness"

- 1. Hard Process (here $t\bar{t}$)
- 2. Resonance decays (t, Z, \ldots)
- 3. Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR, FSR, QED, Weak
- 6. Hadronization, Beam remnants
- 7. Decays, Rescattering

Physics requirements for MCEGs at the EIC

- EIC measurenemts will cover both photoproduction and electroproduction (DIS)
 - ⇒ Need also smooth interpolation between these regions
- Precise knowledge of kinematics (x, Q², ...)
 - \Rightarrow QED radiation effects
- Multi-dimensional nucleon structure
 - \Rightarrow Incorporate polarization into all stages
 - ⇒ Transverse-momentum dependent evolution for TMDs
 - \Rightarrow Exclusive processes for GPDs
- Nuclear targets
 - \Rightarrow Hadronization, saturation, nuclear breakup,

Brian Page

Updates on Herwig 7

Aidin Masouminia

Herwig 7

- Internal MEs at LO and NLO (matchbox)
- Various Matching and Merging options
- Angular-ordered (QTilde) and Dipole shower
- Cluster and string hadronization

Electro- and photoproduction

- LO DIS for NC and CC, jet merging
- Diffractive jets and soft diffraction in DIS
- Inclusive photoproduction at LO

Ongoing efforts

- Include higher-order corrections, EW radiation
- Diffractive photoproduction

H7

Updates on Herwig 7

Herwig 7

- Internal MEs at LO and NLO (matchbox)
- Various Matching and Merging options
- Angular-ordered (QTilde) and Dipole shower
- Cluster and string hadronization

Electro- and photoproduction

- LO DIS for NC and CC, jet merging
- Diffractive jets and soft diffraction in DIS
- Inclusive photoproduction at LO

Ongoing efforts

- Include higher-order corrections, EW radiation
- Diffractive photoproduction

Aidin Masouminia

H7

[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson, arXiv:2406.08026]

Updates on Pythia 8

Electroproduction

- Dipole recoil variant of the default PS
- Vincia sector shower
- Multi-jet merging for DIS

Photoproduction

- Soft and hard QCD processes with MPIs
- Diffraction, hard with MPI rejection
- Nuclear targets with VMD model

Ongoing efforts

- Further tuning for DIS and photoproduction
- Improved DIS kinematics
- Extend γA capabilities, validate in UPCs

Ilkka Helenius

6

Updates on Pythia 8

Electroproduction

- Dipole recoil variant of the default PS
- Vincia sector shower
- Multi-jet merging for DIS

Photoproduction

- Soft and hard QCD processes with MPIs
- Diffraction, hard with MPI rejection
- Nuclear targets with VMD model

Ongoing efforts

- Further tuning for DIS and photoproduction
- Improved DIS kinematics
- Extend γA capabilities, validate in UPCs

Ilkka Helenius

Updates on Pythia 8

Electroproduction

- Dipole recoil variant of the default PS
- Vincia sector shower
- Multi-jet merging for DIS

Photoproduction

- Soft and hard QCD processes with MPIs
- Diffraction, hard with MPI rejection
- Nuclear targets with VMD model

Ongoing efforts

- Further tuning for DIS and photoproduction
- Improved DIS kinematics
- Extend γA capabilities, validate in UPCs

Updates on Sherpa 3

New in Sherpa 3

- NLL accurate parton shower Alaric
- Automatic electroweak corrections
- Polarized cross sections

Electroproduction

- Inclusive NC-DIS at NNLO
- NC- and CC-DIS with MEPS@NLO
- Tuning with uncertainties

Photoproduction

- NLO+PS available for jets
- Hard diffraction at LO and NLO

JHEP 04 (2024) 001]

Updates on Sherpa 3

New in Sherpa 3

- NLL accurate parton shower Alaric
- Automatic electroweak corrections
- Polarized cross sections

Electroproduction

- Inclusive NC-DIS at NNLO
- NC- and CC-DIS with MEPS@NLO
- Tuning with uncertainties

Photoproduction

- NLO+PS available for jets
- Hard diffraction at LO and NLO

Max Knobbe

Updates on Sherpa 3

New in Sherpa 3

- NLL accurate parton shower Alaric
- Automatic electroweak corrections
- Polarized cross sections

Electroproduction

- Inclusive NC-DIS at NNLO
- NC- and CC-DIS with MEPS@NLO
- Tuning with uncertainties

Photoproduction

- NLO+PS available for jets
- Hard diffraction at LO and NLO

Max Knobbe

[Krauss, Meinzinger,

PRD 109 (2024) 3.034037]

Radiative QED corrections

Daniel Reichelt

Theoretical descriptions

- Classical YFS resummation
- Structure functions with resummation
- QED showers

Implementations

- Sherpa: ISR with structure functions, FSR with collinear splitting functions
- Pythia: QED shower, not tested for DIS

Validation

- What are relevant benchmarks?
- Which observables would be relevant?
 ⇒ Follow-up meeting on early Autumn

Dijet photoproduction in POWHEG-Box

Alexander Feike

The POWHEG method

- Multiplicative matching of fixed-order NLO hard processes with parton shower
- Available also for DIS

Photoproduction

- Implementation for dijet production
- Avoid double-counting of direct and resolved processes
- Mathced to FSR in Pythia

[A. Feike, T. Ježo and M. Klasen, in progress]

Christian Gutschow

Rivet

- Framework to encode experimental analysis and perform these on simulated events
- Consistent and robust comparison of theory predictions and experimental measurement
- Essential for MCEG validation and tuning
- Standard tool for LHC experimentalists, almost 2000 analysis available

Tutorial for EIC

- Self-guided tutorial for EIC-related features and analysis writing
- https://gitlab.com/hepcedar/tutorials/mc4eic25

MC4EIC Tutorial: Rivet for EIC

Useful links: Workshop website | HepMC event files

- Introduction
- Docker prerequisites
 - Root privileges for Linux users
 - Missing editor?
 - Setting up ROOT
- · Environment setup
- · Getting started with Rivet
 - Creating a routine skeleton
 - Compiling and running a routine
- · Understanding the routine structure
 - Booking histograms
 - Event loop and finalisation
- · Reconstruction the photon energy fraction
 - Using the FinalState projection
 - · Going beyond the full final state
 - · Cuts and composition
 - Jet-based observables
 - Aside: heavy-flavour tagging
 - Calculating the photon energy fraction
- Merging runs
- Steering analysis logic using options
- Scale uncertainties using on-the-fly variation weights
- Percentile binning
 - The calibration run
 - Preloading a calibration histogram
- Summary
- · Further reading

Rivet hacking session

MCEG validation for EIC

- A limited selection (41/514) of analyses available from H1 and ZEUS, none from fixed-target e-p/A (HERMES, COMPASS)
- Not enough for EIC requirements
- \Rightarrow An afternoon for writing new analyses

An example outcome (Max Knobbe)

- HERMES_2012_I1208547
- Multiplicities of charged Pions and Kaons in SIDIS at 27.6 GeV electrons
- Comparisons with Pythia and Sherpa

[HERMES: PRD 87 (2013) 074029]

Rivet hacking session

MCEG validation for EIC

- A limited selection (41/514) of analyses available from H1 and ZEUS, none from fixed-target e-p/A (HERMES, COMPASS)
- Not enough for EIC requirements
- \Rightarrow An afternoon for writing new analyses

An example outcome (Max Knobbe)

- HERMES_2012_I1208547
- Multiplicities of charged Pions and Kaons in SIDIS at 27.6 GeV electrons
- Comparisons with Pythia and Sherpa

[HERMES: PRD 87 (2013) 074029]

Future MC4EIC plans

QED radiation effects

• A follow-up meeting to discuss implementations and validation

A write-up of the MC4EIC meetings Markus Diefenthaler, Frank Krauss, I.H.

- Discussion on physics requirements and generator status review
- MCEG validation with selected HERA analyses

Further validation with Rivet

- Tutorial in place for EIC, several examples available
 - \Rightarrow Code up your own analysis!

[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson, arXiv:2406.08026]