JOINT EICUG/ePIC COLLABORATION

July 14-18, 2025 Jefferson Lab • Newport News, VA

Opportunities at EIC for hadron structure studies

Patrick Barry

Argonne National Laboratory

July 15th, 2025

Motivation

 We want to study the structure of hadrons in terms of quarks and gluons through QCD

 However, quarks and gluons are not directly observable and structures are unknown!

What are we looking for?

• Images of protons in coordinate and momentum space

• Nonperturbative functions such as TMDs and GPDs are defined in QFTs and describe the intrinsic *partonic structure of protons*

How do we do it?

- Through experimental data in factorizable processes in QCD
- Focus on electron-induced reactions that can be realized at JLab and future EIC

DVCS – GPDs

1. Meson structures

50 Years of QCD

νb,β

δ.b

رa,a

ς,γ

Frontiers of QCD research in *Physical Review*

Precision determination of parton distribution functions:

EIC Impact on Pion PDFs

- Statistical uncertainties are small compared with HERA because of larger luminosity systematics dominate
- $s = 5400 \text{ GeV}^2$, 1.2% systematic uncertainty, integrated $\mathcal{L} = 100 \text{ fb}^{-1}$

Abdul-Khalek, et al., Nuclear Physics A 1026, 122447 (2022).

barry@anl.gov

Measurements of **leading hyperon** at EIC will be needed to access small-*x* PDFs

2. Transverse Momentum Distributions (TMDs)

Essential components of TMD phenomenology

Relation to k_T -space TMD $\tilde{f}_{q/\mathcal{N}}(x, b_T) = (2\pi)^2 \int d^2 \mathbf{k}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T} f_{q/\mathcal{N}}(x, k_T)$

$$\tilde{f}(x, b_T; \mu_0, \zeta_0) = [C \otimes \boldsymbol{f}](x, b_T; \mu_0, \zeta_0) \boldsymbol{f}_{\rm NP}(x, b_T)$$

- Convenient to formulate TMDs in b_T -space (conjugate to k_T)
- Note the explicit dependence on the collinear PDF, while having an intrinsic non-perturbative TMD function
- Apply QCD evolution (has perturbative and non-perturbative components)

TMD PDFs of proton and pion

 $\tilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv \frac{\tilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 \boldsymbol{b}_T \tilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \,.$

- Here we use fixed-target DY data
- Broadening in b_T -space appearing as x increases \Rightarrow Narrowing in k_T -space
- Up quark in pion is narrower than up quark in proton in b_T -space
 - \Rightarrow Broader in k_T -space

PCB, et al., PRD **108**, L091504 (2023).

Simultaneous Analysis of PDFs and TMDs

- Make use of high-energy precise datasets such as LHC
- Exploit the explicit dependence of the PDF on the TMD formalism and perform a global analysis to world TMD and collinear data

TMD					Collinear				
			χ^2/I	$V_{\rm pts}$ (Z)	Process	Experiment	$N_{ m pts}$	PDF-only	TMD+PDF
Process	Experiment	Note	$\frac{\chi}{TMD-only}$	TMD+PDF	DIS	SLAC, BCDMS, NMC, JLab	2501	1.02(0.82)	$1.02 \ (0.59)$
		- · pts				HERA	1185	1.27 (6.01)	$1.27 \ (6.11)$
Fixed target DY	E288, E605, E772	224	1.36 (3.44)	$1.31 \ (3.02)$	Drell–Yan	E866, E906	205	1.27 (2.54)	1.26(2.50)
TeVatron	CDF, D0	80	1.06(0.45)	$1.11 \ (0.71)$	W-lepton asymmetry	CMS, LHCb, STAR	70	0.80 (-1.20)	0.78 (-1.35)
RHIC	STAR, PHENIX	12	1.15 (0.47)	$1.20 \ (0.60)$	W charge asymmetry	CDF, D0	27	1.12(0.51)	1.13 (0.53)
LHC	ATLAS 8 TeV	30	2.07(3.29)	1.78(2.55)	Z rapidity	CDF, D0	56	1.09(0.55)	1.11 (0.60)
	CMS 13 TeV	64	1.18 (1.03)	0.92 (-0.39)	Inclusive jets	CDF, D0, STAR	198	1.00 (0.00)	0.98 (-0.13)
	LHCb 7, 8, 13 TeV	26	0.53(-1.97)	0.50 (-2.12)	W + charm	ATLAS, CMS	37	0.65 (-1.66)	0.62 (-1.84)
TMD total		436	(1.97 (3.72))	1 20 (2 76)	Collinear total		4279	1.10 (4.31)	1.09 (4.14)
I WID total		430	1.21 (3.12)	1.20 (2.70)	Total		4715		1.10 (4.79)

3. Event-level inference

Presenting the data

• Traditionally, detected events are binned in kinematic variables through histograms

barry@anl.gov

Resulting PDFs

barry@anl.gov

EIC outlook

- Leading baryon observables can improve our knowledge of meson structures, complementing existing Drell-Yan data and lattice QCD data
 - Tagged SIDIS access to meson TMDs
- 2. SIDIS measurements at EIC can provide complementary high energy measurements to LHC data for **TMD extractions**
 - Simultaneous analysis of FFs and TMD FFs
- 3. Improve our knowledge of internal structure of hadrons through event-level inference
 - Next step is to analyze the effects of a detector