

EIC Beam-Beam Simulations and Collision Scenarios

Derong Xu

EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025 ectron-Ion Collider

Luminosity and beam-beam interaction

- Luminosity characterizes the ability of a collider to produce events for a given physical process: $dN/dt = \mathcal{L} \cdot \sigma_p$. Achieving high luminosity is a central goal of collider design across the **energy**, **precision**, and **QCD** frontiers.
- Beam-beam interaction refers to the electromagnetic force exerted by one beam on the other during collisions.
 - Dynamic, highly non-linear, 6-Dimensional
 - In circular colliders, the beam-beam parameter, which characterizes the maximum tune shift induced by collisions, quantifies the strength of beam-beam interaction.
 - ▶ In lepton colliders, beam-beam limit is a well-defined empirical threshold for the beam-beam parameter, typically: $\xi \leq 0.10 0.15$
 - In hadron machines, due to the lack of effective cooling, the achieved beam-beam parameter is much smaller than in lepton colliders. Beam quality can degrade over time due to the beam-beam interaction.
- The EIC enters an unprecedented regime with large beam-beam parameters for both electron and hadron beams — beyond existing operational experience.

Electron-Ion Collider EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025 Derong Xu

Crab crossing

- A large crossing angle is essential to avoid parasitic collisions, reduce background, and accommodate the detector and IR magnets.
- The geometric luminosity loss can be restored by crab cavities.
- Crab crossing of electron and positron beams at KEKB enabled record luminosities in lepton colliders.
- Crabbing of proton bunches has been demonstrated at CERN's SPS

Electron-Ion Collider EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025

Flat hadron beam

The **flat hadron beam** — vertical emittance ten times smaller than horizontal emittance — is a unique feature of the EIC. Demonstrated at RHIC @Phys. Rev. Lett. 132, 205001

Emittance quantifies the beam distribution in phase space. Emittance plays a role analogous to temperature:

$$ho(\mathbf{x}, \mathbf{p}_{\mathbf{x}}) \propto \exp\left(-rac{\gamma \mathbf{x}^2 + 2lpha \mathbf{x} \mathbf{p}_{\mathbf{x}} + eta \mathbf{p}_{\mathbf{x}}^2}{2\epsilon_{\mathbf{x},\mathrm{rms}}}
ight), \qquad \mathbf{p}_i \propto \exp\left(-rac{\mathbf{E}_i}{\mathbf{k}_\mathrm{B} \mathbf{T}}
ight)$$

- In electron storage ring, the emittance is determined by machine design. The electron beam is naturally flat.
- In hadron storage ring, without an external cooling mechanism, the beam emittance is determined by the particle sources and is typically round.
- ▶ Defining flatness as the aspect ratio at the IP, $\kappa \equiv \sigma_y^* / \sigma_x^*$, the luminosity and beambeam parameters scale as $\mathcal{L} \propto \frac{1}{\kappa}$, $\xi_x \propto \frac{\beta_x^*}{1+\kappa}$, $\xi_y \propto \frac{\beta_y^*}{\kappa(1+\kappa)}$. By scaling $\beta_{x,y}^*$, one can increase luminosity while keeping the beam-beam parameters constant.

Electron-Ion Collider Elc User Group & ePIC Joint Collaboration Meeting July 14-18, 2025 Der

Finite bunch length effect @Phys. Rev. Accel. Beams 24, 041002

Sinusoidal kick from the crab cavity $\Delta p_x = -\frac{\theta_c}{k_c \Lambda} \sin(k_c z), \qquad \Delta p_z = -\frac{x \theta_c}{\Lambda} \cos(k_c z)$

Crabbed offset at IP

$$\Delta \mathbf{x} = -\theta_{\mathbf{c}} \left[\frac{\sin(\mathbf{k_{c} z})}{\mathbf{k_{c}}} - \mathbf{z} \right] \approx \frac{1}{6} \theta_{\mathbf{c}} \mathbf{k_{c}^{2} z^{3}}$$

x - z motion is coupled when $|k_c z| \sim 1$, applicable for EIC hadron beam

Electron-Ion Collider

Finite bunch length effect @Phys. Rev. Accel. Beams 24, 041002

Left: luminosity, middle: frequency map of crab crossing, right: frequency map of head-on

The luminosity degradation is much faster in crab crossing than in head-on collision.
 There are 2 kinds of resonances existing in the footprint

$$3\nu_{\mathbf{x}} + \boldsymbol{\rho}\nu_{\mathbf{z}} = 1, \qquad 2\nu_{\mathbf{x}} - 2\nu_{\mathbf{y}} + \boldsymbol{\rho}\nu_{\mathbf{z}} = 0$$

The first kind only exists in crab crossing scheme.

The second kind in head-on scheme comes from the chromaticity and hourglass effect.

Electron-Ion Collider EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025 Derong Xu

Finite bunch length effect @Phys. Rev. Accel. Beams 24, 041002

Mitigation methods:

- Moving the proton working point from (0.310, 0.305) to (0.228, 0.210)
- Including second order harmonic crab cavity:

$$\Delta \mathbf{x} = -\theta_{\mathbf{c}} \left[\frac{4\sin(\mathbf{k_c}\mathbf{z})}{3\mathbf{k_c}} - \frac{\sin(2\mathbf{k_c}\mathbf{z})}{6\mathbf{k_c}} - \mathbf{z} \right]$$

Proton beam size evolution in weak-strong simulation

Converging of EIC baseline design @EIC CDR

Parameter	proton	electron	
Ring circumference [m]	3833.8451		
Particle energy [GeV]	275	10	
Lorentz energy factor γ	293.1	19569.5	
Bunch population [10 ¹¹]	0.688	1.72	
RMS emittance (H,V) [nm]	(11.3, 1.0)	(20.0, 1.3)	
β* at IP (H, V) [cm]	(80, 7.2)	(45, 5.6)	
RMS bunch size σ^* at IP (H, V) [µm]	(95, 8.5)		
RMS bunch length σ_l at IP [cm]	6	0.7	
Beam-beam parameters (H, V)	(0.012, 0.012)	(0.072, 0.1)	
RMS energy spread $[10^{-4}]$	6.8	5.8	
Transverse tunes (H,V)	(29.228, 30.210)	(51.08, 48.14)	
Synchrotron tune	0.01	0.069	
Longitudinal radiation damping time [turn]	-	2000	
Transverse radiation damping time [turn]	-	4000	
Luminosity $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.0		

The first kind of resonance has been mitigated via parameter optimization.

However, the second kind of resonance becomes a problem when taking external noise into consideration.

Electron-lon Collider EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025

Emittance transfer @arXiv:2506.21289

- The vertical emittance growth is always accompanied with horizontal emittance decrease.
- In real-world accelerator operations, physical noise is unavoidable. For simplicity, we examine robustness against three representative types.
- Electron orbit ripple: proton diffusion via beambeam interaction.
- Electron size ripple: diffusion + tune modulation
- Proton intra-beam scattering (IBS) diffusion: broadband, white noise source covering betatron tunes
- Emittance transfer imposes more stringent requirements on systems such as magnet power supplies, crab cavity phase noise, and RF phase and amplitude stability.

Emittance transfer @arXiv:2506.21289

- Unequal transverse emittances, synchro-betatron resonance, and physical fluctuations form the essential ingredients for driving emittance transfer.
- Unlike dispersion-based mechanisms that redistribute diffusion or cooling rates, the emittance always flows from hot to cold plane.
 - Orange: Without cooling, both horizontal and vertical emittances grow over time.
 - Green: With horizontal cooling applied, the horizontal emittance is stabilized, but vertical emittance still increases.
- Although cooling is not within the EIC scope any more, the emittance transfer necessitates dedicated and strong vertical cooling.

Dynamic focusing @arXiv:2506.21289

How it works:

- ► The crab cavity correlates *x* and *z* motion: at the downstream of crab cavity, there is an time-dependent offset $\Delta x = \zeta z$
- The feeddown effect of sextupole produces time-dependent focusing:

$$\Delta \boldsymbol{p}_{\boldsymbol{x}} = -\boldsymbol{K}_{2}\boldsymbol{L}\left(\boldsymbol{x}^{2} - \boldsymbol{y}^{2}\right) = -2\boldsymbol{K}_{2}\boldsymbol{L}\boldsymbol{\zeta}\boldsymbol{x}\boldsymbol{z} + \ \dots, \qquad \Delta \boldsymbol{p}_{\boldsymbol{y}} = 2\boldsymbol{K}_{2}\boldsymbol{L}\boldsymbol{x}\boldsymbol{y} = 2\boldsymbol{K}_{2}\boldsymbol{L}\boldsymbol{\zeta}\boldsymbol{y}\boldsymbol{z} + \ \dots$$

- After ψ_y = π/2, the time-dependent focusing translates into vertical drift, which exactly compensates the virtual drift from IP to CP
- Another sextupole cancells the geometry term from this sextupole

Dynamic focusing @arXiv:2506.21289

- The synchro-betatron resonance is suppressed.
- Tolerance to physical noise is improved by factors of two to three. accompanied by a slight gain in luminosity.

	Parameter	Unit	EIC	Dynamic
			Baseline	Focusing
4.0 X	$eta_{{f y},{f e}}^*$	$^{\mathrm{cm}}$	5.6	7.2
4.5 Diffusion Index	Luminosity	$\frac{10^{34}}{\mathrm{cm}^{2}\mathrm{s}}$	0.93	0.97
	E. orbit ripple	$\sigma^*_{\mathbf{X},\mathbf{Y}}$	2.5%	5.0%
	E. size ripple	$\sigma^*_{\mathbf{x},\mathbf{y}}$	0.3%	1.0%
6.0	P. IBS time	hour	4.5	1.5
Derong Xu				

Beyond EIC @arXiv:2506.21289

- In EIC beam parameter optimization, the detector constrains equal divergence in both planes. It leads to €y/€x = βy/βx
- The dynamic focusing allows us to further reduce proton vertical beta.

Luminosity model @William Bergan

- Vertical emittance growth originates from resonance-driven emittance transfer.
- Assuming vertical growth is 50% of horizontal growth, the average luminosity is $2.2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$.
- ► Applying a dynamic focusing scheme suppresses the transfer, raising average luminosity to $2.7 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$.
- ▶ Poor control of vertical growth can reduce luminosity to 1.5×10^{33} cm⁻²s⁻¹.
- Once vertical growth is suppressed, luminosity is limited by horizontal and longitudinal emittance — effective high-energy cooling is required to reach 10³⁴.

Electron-Ion Collider EIC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025

Summary

- The EIC enters a novel regime with large beam-beam parameters for both beams, flat hadron profiles, and crab crossing — beyond existing collider experience.
- Finite bunch length effects cause significant luminosity degradation. This is mitigated by parameter optimization and the inclusion of a second-harmonic crab cavity.
- Emittance transfer emerges in beam-beam simulations with external noise, driven by resonance streaming around $2\nu_x 2\nu_y + p\nu_z = 0$.
- A dynamic focusing scheme combining crab cavities with sextupoles suppresses synchro-betatron resonances and improves noise tolerance.
- Dynamic focusing shows promise in mitigating emittance transfer. We are exploring IR lattice solutions that implement this scheme without reconfiguring IR6.
- ► With resonance suppression and noise control, luminosity performance is limited by horizontal and longitudinal IBS diffusion. Achieving 10³⁴ cm⁻²s⁻¹ will require effective high-energy cooling.

Thank you!

Electron-Ion Collider ElC User Group & ePIC Joint Collaboration Meeting July 14-18, 2025