Three Ideas for low-energy e+

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by DOE DE-SC00013941, NSF PHY-2412757, 2113436, and JSA

Three Ideas for low-energy e+ experiments

2

- 1) Axial form factor cont'd
- Axial form factor proposal is using electrons e- $p \rightarrow n v$ with bkg suppression
- How about e+ n → p v, by deploying e+ d → p p v with spectator proton and two (charged) protons in the final state?
- Possible configuration:
 PEPPo-2 + deuterated polyethylene target → solenoid + TPC (+ photon veto)

Three Ideas for low-energy e+ experiments

2) Positron (and electron) stopping power measurements:

- Implementation of dE/dx in Geant4 etc. based on parametrizations of 1980's database; low-energy EM physics in Geant4 not so accurate
- Electrons: dE/dx bigger / range is shorter, due to attraction by ions and enhanced bremsstrahlung losses in the field of ions, no Bragg peak
- Positrons: less bremsstrahlung, Bragg peak
- Layered calorimetry for dE/dx and range for 0-10 MeV e+ (and e-)
- Correlate e+ range data 0-10 MeV with annihilation position from PET
- Potential application of radiation therapy with positron beams

Three Ideas for low-energy e+ experiments

- 3) Positron annihilation DM search
- A' production, $e + e \rightarrow$ gamma A', at low energy 0-10 MeV
- Scan ultra-low A' mass region (1 keV to 1 MeV), using HPGe + charged veto
- Sensitive to visible and invisible A'

THANK YOU!