A dark photon search with JLab positron beam

Positron A' collaboration

P.Achenbach, A.Gasparian, N.Liyanage, B.Raydo, B.Wojtsekhowski, W.Xiong

S.Boyarinov, A.Camsonne, P.Degtiarenko, D.Gaskell, J.Grames, W.Henry, D.Higinbotham, I.Jaegle, D.Jones, M.Jones, D.Mack, D.Meekins, R.Michaels, E.Pasyuk, A.Somov, S.Stepanyan, H.Szumila-Vance, S.Taylor, A.S.Tadepalli, A. Ahmidouch, A.Ahmed, X.Bai, G.Cates, H.Nguyen, V.Nelyubin, D.Hamilton, I.Rachek, D.Nikolenko, E.King, J.Napolitano, S.Mayilyan, H.Mkrtchyan, A.Shahinyan, V.Tadevosyan, D.Dutta, C.Peng, I.Larin, R.Miskimen, T.Averett, L.Gan, M.Khandaker, B.Vlahovic and

the **PRAD collaboration** and the **Positron Working Group**

Dark matter is an elephant in the room

NASA FINDS DIRECT PROOF OF DARK MATTER

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Motivation from 2006

B.Wojtsekhowski

A Direct Detection Search for Hidden Sector New Particles in the 3-60 MeV Mass Range , X17 - E12-21-003

Belle-II recent analysis invisible decay

arXiv:2212.03066v3 e+e- --> $\gamma *$ + Z' with invisible decay of Z'

Good mass resolution for $m_{Z'} < 0.1$ GeV is hard to get

Current summary of A' invisible decay

e+e- --> γ + A' with invisible decay of A'

The experimental method

- A positron beam on a hydrogen target (e⁺e⁻ annihilation)
- Selection of the one-photon final state events
- Search for a bump in the missing mass spectrum
- Connection between A' and the dark matter is not essential for the proposed study

$$M_{A'}^2 = 2m_e^2 - 2m_e * (E_+ - E_\gamma) - 4E_+ * E_\gamma * \sin^2(\frac{\theta_\gamma}{2})$$

Detector non-uniformity estimation-I

$$E_{e+}$$
 =11.0 GeV $M_{A'}$ =50 and 80 MeV, single γ -cluste

$$M_{A'}^2 = 2m_e^2 + 2m_e * (E_+ - E_\gamma) - 4E_+ * E_\gamma * \sin^2(\frac{\theta_\gamma}{2})$$

Mass spectrum quality contributions:

- Photon angle, θ
- calibrated using GEM chamber with 1x10⁻⁶ radian steps
- Detector efficiency calibrated using e⁺-e⁻ rate and the photon angle, 10⁻⁶
- Photon energy cal
- calibrated using e⁺-p and e⁺-e⁻ elastic locus/band and θ

Some observations

- The search for a new particle, the U/A'-boson, by measuring the missing mass spectra is unique.
- The Belle-II is only other existing option but projected sensitivity is much lower.
- The decay to e+e- could be very small, extra ε^2 , so an additional 10⁸ level of statistics.
- Positron beam at INFN can do great job, just need Poseidon (P. Valente's project).
- Positron beams are running at KEK, BINP, Cornell in the rings, DESY has pulsed beam.
- Design study e+ at Mainz: EPJ D, H. Backe et al, 2022: 500 MeV, 1 MeV, 0.5 uA
- The 120 MeV stage will be great step forward at JLab.

Summary

- 1. This experiment will be sensitive to the A' coupling constant ε^2 on the level of 2×10^{-8} in the 15-90 MeV mass range.
- 2. The experiment will based on the existing PRAD experimental setup in Hall B. Required beam line development is well understood.
- 3. JLab positron project with stages will have better chance.