Update on PR12+23-008

"A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12"

Axel Schmidt
Positron Working Group Annual Meeting
March 24, 2025

Is hard two-photon exchange responsible for the proton form factor discrepancy?

E12+23-008: Compare e^+p and e^-p elastic scattering at CLAS12

- J. C. Bernauer, V. D. Burkert, E. Cline, I. Korover, A. Schmidt, N. Santiesteban, T. Kutz
- 55 PAC days in Hall B
- Alternating e^+, e^- beams
 - 2.2, 4.4., 6.6 GeV, at 1 μA
- Liquid H₂ target, 10^{35} cm⁻² s⁻¹ luminosity
- Measure $R_{2\gamma} = \sigma_{e^+p}/\sigma_{e^-p}$
 - Coincidence of both e^\pm and p
 - Measure all combinations of magnet polarities to reduce systematics.

E12+23-008: Compare e^+p and e^-p elastic scattering at CLAS12

6 GeV electron data from CLAS12 Run Group M

E12+23-008: Compare e^+p and e^-p elastic scattering at CLAS12

E12+23-008: Compare e^+p and e^-p elastic scattering at CLAS12

Expected reach at 2.2 GeV (1.3 days)

Expected reach at 4.4 GeV (4 days)

Expected reach at 6.6 GeV (44 days)

Next steps

1. Trigger design

- We'll need to build a forward-proton elastic trigger
- No updates since PAC, work still to be done.

2. Radiative corrections

- Received question during PAC Q&A about systematics from RCs
- Working now to
 - Consolidate/document RC approaches from the OLYMPUS era
 - Studying the impact of different approaches
 - Study systematics for CLAS12 positron measurement

OLYMPUS used a custom radiative event generator, developed from Mainz A1.

Standard SIMC Approach

- Radiation is fully "peaked"
- No interference between brems. diagrams
- Effective beam energy is updated after initial-state radiation.

OLYMPUS used a custom radiative event generator, developed from Mainz A1.

Standard SIMC Approach

- Radiation is fully "peaked"
- No interference between brems. diagrams
- Effective beam energy is updated after initial-state radiation.

OLYMPUS Generator Approach

- Radiation emitted in all directions
- Full complex amplitude of brems. diagrams preserved.
- A single radiated photon can be both initial- and final-state.

Next goals

 Working with J. C. Bernauer to get our paper on the generator written and submitted.

Package the code in a standalone version, and make public.

Continue to develop...

Studying the peaking approximation in Super-Rosenbluth measurements.

Quinn Stefan, Axel Schmidt, Eur. Phys. J. A 60, p. 229 (2024)

- Compare RCs in a Super-Rosenbluth configuration in peaking and OLYMPUS approaches.
- Within the peaking approximation, Super-Rosenbluth technique has more favorable RCs than traditional Rosenbluth technique.
- However, there can be a large contribution from non-peaked radiation!

Studying the peaking approximation in Super-Rosenbluth measurements.

Quinn Stefan, Axel Schmidt, Eur. Phys. J. A 60, p. 229 (2024)

Conclusions

- Work to be done after PAC
 - Trigger design ----> Work still to be done
 - Radiative corrections ----> Underway
- Next tasks
 - Publish OLYMPUS Radiative Generator paper
 - Package generator code for public release
 - Improve and add features
 - Off-shell / Compton Form Factors
 - Study impact on systematics
- Help out theory with new electron observables ---> see talk on Wed.