Degraded beam study of CEBAF

Victor Manuel Lizarraga Rubio Universidad de Guanajuato

Positron Working Group Workshop March 25th, 2025

Jefferson Lab

2

Outline

Background Degrader project details Commissioning plan Beam studies Preliminary results Summary and outlook

001 01100001011 000100111 00011001

00101011101101000

10010101011001111000

000110010

Motivation

- Proposed Ce+BAF upgrade
- Circulation of large emittance beams in CEBAF

100:0100101011006

001001100001011 00010011100011001

00101011101101000

10010101011001111000

Transfer line from LERF to CEBAF

LDRD degrader project: Assessing CEBAF using degraded beams for the Ce+BAF positron upgrade

- Goals of the project:
 - Measurement of the acceptance of CEBAF
 - Characterization of emittance evolution in CEBAF as a function of initial beam emittance from the injector beamline

• FY2024 goals:

- Design, procurement and installation of degrader components
- Measurements of CEBAF transverse and longitudinal acceptance

Straight-ahead degrader schematic

Degrader apparatus details

- The degrader has three main components:
- A target ladder with three carbon foils and a YAG viewer
 - Degrades the incoming beam through multiple scattering
 - Foils thicknesses are 1, 5 and 10 microns
- Two collimating apertures with two holes sizes
 each
 - Defines the maximum transmitted transverse emittance
 - First aperture (A5) hole radii are 1 mm and 3 mm
 - Second aperture (A6) hole radii are 4 mm and 8 mm

- Focusing solenoid
 - Helps with transport of degraded beam

Target Ladder

Aperture

Solenoid

Degrader installation in the CEBAF injector beamline

Target Ladder

From booster

A5 Aperture

Degrader apparatus location

Recent Experiment Readiness Review

- ERR was held on February 3rd, 2025
- Information presented:
 - Project description
 - Personnel safety; radiological, electrical, magnetic fields
 - Machine safety; target heating, current limits, interlocks
 - Readiness to operations; control screens, failure modes, operator training.
 - Commissioning and beam studies (more detail in the next two slides)
- Project was finally approved for operations last Thursday!
 - Division safety officer sign off is still missing
 - Commissioning and beam studies to happen at allotted beam study time during the upcoming physics run

Commissioning plan

 Plans to verify degrader works as intended and doesn't affect normal CEBAF operations

- Beam studies:
 - Verify optics response of the solenoid
 - Calibrate aperture current readbacks vs. FC2
 - Scan apertures with beam to map position and size
 - Measure baseline vacuum and radiation levels for each target foil
 - Measure effects of the solenoid residual field before and after initial poweron

Exciting update!

 Commissioning started yesterday!

 Aperture scans with beam also started

0100 0100101011000

001001100001011 00100111000011001

00101011101101000

10010101011001111000

View of the first beam on the degrader viewer (ITV0L02A)

Planned beam studies related to the degrader

- With nominal beam:
 - Transverse aperture study
 - Mapping the beampipe aperture using correctors
 - Longitudinal acceptance
 - Bunch length and momentum spread limitations in the CEBAF injector

- With degraded beam:
 - In the injector region:
 - Measure optics and emittance from various targetaperture combinations after 0L04 cryomodule
 - Measure energy spread at the 4D spectrometer (before the injector chicane)
 - If there's no issues with the degraded beam transport in the injector beamline:
 - Transport through North Linac, first Arc and further passes

Simulation results – Resulting phase space

 Six different target aperture combinations (only nominal and three of them shown here)

 Transverse phase space right after the second aperture (A6)* →

Simulated with Geant4

*Preliminary results using old CEBAF optics

Simulation results – Beam matching

- Goal is to find the quad settings that match the optics of the different degraded distributions to nominal optics
- Match in two steps
 - First match in the region before first full acceleration cavity, prioritizing minimizing beam loss in the area
 - Second match before the injector chicane
- Simulation with Elegant

*Preliminary results using old CEBAF optics

Simulation results – Quad scan simulations

- Simulation of emittance measurement downstream of second full accelerating cavity (0L04)
- Vary MQD0L06 focusing strength (K) and register beam size at position of wire scanner

Simulation with Elegant

*Preliminary results using old CEBAF optics

Simulation results – Final beam parameters

- Beam tracking through the rest of the injector beamline after matching
- Beam parameters at the end of the injector chicane, at the merging point to main CEBAF, for different degrader combinations

Simulation with Elegant

*Preliminary results using old CEBAF optics

Momentum spread and geometric emittance for different degrader configurations*

Target-A5-A6 [um-mm-mm]	$\delta p/p \ [imes 10^{-3}]$	ε _{geo,x} [nm]	ε _{geo,y} [nm]	
1-1-4	0.051	56.1	53.1	
1-3-4	0.068	76.5	78.9	
5-3-4	0.105	157.0	137.9	
10-3-4	0.124	176.5	153.7	
5-3-8	0.198	215.4	184.0	
10-3-8	0.272	268.5	234.7	

Simulated expected positron geometric emittance and momentum spread after injector Chicane from Y. Roblin JLAB-TN-21-043

	Electrons			Positrons		
Area Chicane	$\frac{\delta p / p[\times 10^{-3}]}{0.5}$	$\varepsilon_x[nm]$ 4.00	$\varepsilon_y[nm]$ 4.00	$\frac{\delta p/p[\times 10^{-3}]}{10}$	$\varepsilon_x[nm]$ 500	$\varepsilon_y[nm]$ 500

Measured and simulated momentum aperture

- Experimental measurements performed by Dennis Turner
- Measured the momentum aperture in the Injector Chicane giving a momentum offset using the last two cavities of 0L04
- Simulations suggest that asymmetry could be explained by fractional error in the first two chicane dipoles
 - Stray fields from CEBAF dipoles also have an effect

Measurement

p [MeV/c]	Momentum aperture
118.14	$-7.00 \times 10^{-3}, 4.25 \times 10^{-3}$

Summary & outlook

- The electron beam degrader has been installed in the CEBAF injector
- Degrader experiment has been approved
- Beam tracking in the CEBAF injector has been simulated with degraded distributions including the transverse aperture
- Preliminary simulations of expected measurements have been started
- Commissioning and degraded beam studies will begin as soon as beam study time is available
- Simulations with the most updated optics will be redone to find optimum beam line magnet settings

0010101110110100

1011000111111

QUESTIONS?

