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Example of a state-of-the-art polarized photogun:
the 200 kV CEBAF gun (“R30”)



Generating the electron beam for the positron injector
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• High beam current determined by low conversion efficiency
• Electron beam must be polarized to make polarized positrons
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Gun requirements

• Laser-driven photogun (780 nm)
with GaAs-based photocathode

• Technology is mature, design can be
based on existing guns (e.g., CEBAF)

• Most required parameters are not
challenging:
∘ bunch charge: 4pC
(1mA at 250MHz)

∘ bias voltage: lower limit given by
subsequent RF structures, TBD

• 200 kV routinely achieved,
can do more if needed

∘ spin polarization > 80% is
standard, not current-dependent
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3



Dominant limitation of photocathode lifetime: ion back-bombardment

• Electron beam ionizes residual gas
within accelerating gap

• Ions are accelerated toward the
photocathode, rate ∝ current

• Ions striking photocathode surface
locally degrade its quantum
efficiency (QE)

• Accept 10× decrease between
activations: ≈ exp(−2)

• CEBAF: 1/e lifetime 300C
⇒ 2 lifetimes ≈ 7 days at 1mA

6 cm

e− beam

Ions

Requirement for unprecedented lifetime of high-polarization photocathodes
(1/e lifetime > 1000C would give ≈ 23 days uptime at 1mA)

4



How to increase the charge lifetime

• Improve vacuum: already ≈ XHV
• Increase voltage (ionization
cross-section): unclear trade-off

• Make the photocathode less
sensitive: being worked on
independently

• If we have to accept the remaining
ions, can we displace/dilute the
damage?
∘ Use as much photocathode area
as possible for emission

∘ Deflect electrons and/or ions to
displace damage area

• Apply positive bias to anode for a
potential barrier to reflect ions
from downstream: already standard
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CEBAF measurement of lifetime vs. laser-spot size (2017)

• Non-linear scaling with spot size
• Only a factor of ≈ 2 away
• Measured with unbiased anode

J. Grames et al., “Milliampere Beam Studies using High Polarization Photocathodes at the CEBAF Photoinjector,”
Proceedings of XVII International Workshop on Polarized Sources, Targets & Polarimetry — PoS(PSTP2017), vol. 324, 2018, p. 014
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A closer look at the dynamics

• Electron beam envelope
determines starting position of ions

• Low energy: close to photocathode,
damage area ≈ emission area

• High energy: far away from
photocathode, damage area
depends on optics…
∘ Deflect electron beam away from
emission area⇒ shift ion origin

∘ Ions close to the anode are also
subject to its focusing field

• Simulate in detail
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Beam trajectory in gap determines energy
distribution of ions incident on emission area
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Simulating ion damage in photoguns

• Need electrostatic field map (CST)
• Ions are created inside electron beam
depending on envelope and energy
⇒ simulate electron dynamics with
General Particle Tracer (GPT)

• Extend GPT with IONATOR to get ions and
track to photocathode in the same model

• Problem: QE degradation depends on ion
energy in an unknown way
(likely: more energy ≈ worse)
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Simulated ion distribution hitting the
photocathode (example gun)
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Simulating lifetime

QE profile

Laser profile

Beam profile Ion profile
GPT

guessed damage function

• Most of the dynamics can be simulated
from first principles

• Reasonable guess of damage function
should allow for qualitative comparisons

white = active area

red = laser spot ±2𝜎
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Example simulation, after 50 time steps
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Lifetime measurements at the Gun Test Stand (GTS) in the LERF building

≈ 4m

Preparation
chamber

DC HV
photogun

Beam
dump

Lenses and beam diagnostics
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GTS photo
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QE damage measurements

• No direct way to measure the ion
distribution on the photocathode

• QE can be measured as a function
of position
∘ Caveat: convolution with laser
profile⇒ minimize spot size for
measurement

• Extract a known amount of charge
with a given laser-spot size, then
compare measured and simulated
QE distribution to calibrate
simulation model

• Systematic studies at GTS to
happen this year
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Example of a QE scan from UITF,
showing ion damage on bulk GaAs
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Status of GTS simulations with the as-built gun

5 cm

CST model by G. Palacios-Serrano
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Cathode focusing

• Most guns focus the beam to
manage its envelope

• GTS gun is ≈ non-focusing to
maximize surface field
⇒ good test case for comparison

• Prototype: focal length ≈ gap length

∘ Large deflection of off-center
beam while centered in anode
⇒ displaced ions

∘ Correct for deflection downstream
∘ Large divergence needs focusing
∘ Low-aberration gun optics for
clean off-center emission

−10

−5

0

𝑦
(m
m
)

0 5 10
−10

−5

0

𝑥 (mm)

𝑦
(m
m
)

no
n-
fo
cu
si
ng

fo
cu
si
ng

0

50

100

150

200

𝐸 k
in
(k
eV
)

Simulated ion distributions for non-focusing
(top) and focusing (bottom) example guns
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Design of gun electrodes to enhance lifetime

• Standard focusing cathode
electrodes are ≈ conical

• Non-ideal transition to flat
photocathode & electrode size
constraints (surface field) cause
aberrations
⇒ large emittance for off-center
emission with large spot size

• Lift constraints later, optimize field
geometry first (cost & project
scope)

• Unusual paradigm: engineer the
field for low ion damage, not
primarily electron beam dynamics

Example of a strongly focusing gun: R30-3
electrode geometry and field distribution
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Examples of fabricated electrode assemblies
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Expected project time line

FY 2025 FY 2026
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Lifetime & optics
simulations

ME design &
fabrication

Hardware
installation

Lifetime
measurements

• Objective: predictable, enhanced charge lifetime for high-current operation
• GTS about to start up, expecting beam results this year
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Backup: Ce+BAF positron injector layout

Polarized
Electron
Source

Wien
FilterSRF

(10 MV)SRF
(60 MV)

SRF
(60 MV)SpectrometerReturn 

Leg

High
Power
Target Capture

Linac+B2

Matching
Section Momentum

Selection

SRF
(90 MV) Bunch

Compressor
Spin Rotator 123 MeV

Positron Beam

QWT+B1

18


