Dave Gaskell, Tyler Hague, and Michael Nycz

Positron Working Group Workshop

March 25th 2025

Outline

- Motivation I
 - Elastic Scattering
- Motivation II
 - Importance of studying TPE in Deep Inelastic Scattering & SIDIS
 - Summary of our current understanding of TPE in DIS & SIDIS
- Experimental Plan
 - Summary and Conclusion

 G_E/G_M

$$\sigma_{R} = d\sigma/d\Omega[\varepsilon(1+\tau)/\sigma_{Mott}]$$

$$\sigma_{R} = \tau \, G_{M}^{2}(Q^{2} + \varepsilon G_{E}^{2})$$

 G_E/G_M

Two-Photon Exchange

Elastic Two-Photon Exchange Measurements

<u>Cross section ratio</u>: $\frac{e^+}{e^-}$

$$R \equiv \frac{\sigma^{+}}{\sigma^{-}} = \frac{|M_{1\gamma} + M_{2\gamma}|^{2}}{|M_{1\gamma} - M_{2\gamma}|^{2}} \to R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

or

Comparison of Super-Rosenbluth e^+ & e^- measurements

Beam- and Target- Normal SSA

$$A_n \propto 2Im(M_{1\gamma}M_{2\gamma}^*)$$
$$A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

- Asymmetry is 0 at Born level (Single-Photon)
- No restrictions for multi-photon exchange (TPE)

Elastic Two-Photon Exchange Measurements

Cross section ratio:
$$\frac{e}{a}$$

$$R \equiv \frac{\sigma^+}{\sigma^-} = \frac{\left|M_{1\gamma} + M_{2\gamma}\right|^2}{\left|M_{1\gamma} - M_{2\gamma}\right|^2} \rightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

or

Comparison of Super-Rosenbluth e^+ & e^- measurements

Sensitive to the **Real** part of TPE

Beam- and Target- Normal SSA

$$A_n \propto 2Im(M_{1\gamma}M_{2\gamma}^*)$$

 $A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

- Asymmetry is 0 at Born level (Single-Photon)
- No restrictions for multi-photon exchange (TPE)

Sensitive to the **Imaginary** part of TPE

Elastic Two-Photon Exchange Measurements: $\frac{e^+}{e^-}$

B. S. Henderson et al. (OLYMPUS Collaboration

Elastic Two-Photon Exchange Measurements

Cross section ratio: $\frac{e^+}{e^-}$

$$R \equiv \frac{\sigma^{+}}{\sigma^{-}} = \frac{|M_{1\gamma} + M_{2\gamma}|^{2}}{|M_{1\gamma} - M_{2\gamma}|^{2}} \to R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

or

Comparison of Super-Rosenbluth e^+ & e^- measurements

Sensitive to the Real part of TPE

Beam- and Target- Normal SSA

$$A_n \propto 2Im(M_{1\gamma}M_{2\gamma}^*)$$
$$A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

- Asymmetry is 0 at Born level (Single-Photon)
- No restrictions for multi-photon exchange (TPE)

Sensitive to the **Imaginary** part of TPE

Elastic Two-Photon Exchange Measurements: BNSSA

- Large number of measurements for A_n
 - Non-zero asymmetry
 - Measured for range of light & heavy nuclei
- Measurements made in low Q^2 region
 - $Q^2 < 0.7 \, {\rm GeV^2}$

Elastic Beam-Normal Single Spin Asymmetry Measurements

Summary from Elastic Scattering

- Large discrepancy between measurements of $\frac{G_E}{G_M}$
 - Discrepancy grows with $Q^{\rm 2}$
- Experimental
 - $\frac{e^+}{e^-}$ experiments inconclusive
 - BNSSA non-zero but cover a limited Q^2 range
- Theory
 - No consensus on size of the effect or the $\epsilon \& Q^2$ dependence

Summary from Elastic Scattering

- Large discrepancy between measurements of $\frac{G_E}{G_M}$
 - Discrepancy grows with Q^2
- Experimental
 - $\frac{e^+}{e^-}$ experiments inconclusive
 - BNSSA non-zero but cover a limited Q^2 range
- Theory
 - No consensus on size of the effect or the ϵ & Q^2 dependence

Broad consensus: Two-Photon Exchange effects causing the discrepancy

Summary from Elastic Scattering

• Large discrepancy between measurements of $\frac{G_E}{G_A}$

• Discrepancy grows with Q^2

Eventimontal

Would Two-Photon Exchange only be important for elastic scattering?

- BNSSA non-zero but cover a limited Q^2 range
- Theory
 - No consensus on size of the effect or the $\epsilon \& Q^2$ dependence

Broad consensus: Two-Photon Exchange effects causing the discrepancy

- No corollary to polarization transfer in DIS or SIDIS
- $\frac{G_E}{G_M}$ highlights the importance of understanding TPE effects in DIS & SIDIS

- No corollary to polarization transfer in DIS or SIDIS
- $\frac{G_E}{G_M}$ highlights the importance of understanding TPE effects in DIS $k = (E, \vec{k})$

$$\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \left[\frac{F_2(\nu, Q^2)}{\nu} \cos^2\left(\frac{\theta}{2}\right) + \frac{2F_1(\nu, Q^2)}{M} \sin^2\left(\frac{\theta}{2}\right) \right]$$
$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_2 M}{F_1} \left[1 + \frac{\nu^2}{Q^2} \right]$$

- Cross section written in terms of F_2 & R
- R is assumed to be the same for all nuclei Allows to relate cross section ratio to structure function ratio
 - a. EMC effect

P = (M, C)

 $k = \left(E, \overline{k'}\right)$

- No corollary to polarization transfer in DIS or SIDIS
- $\frac{G_E}{G_M}$ highlights the importance of understanding TPE effects in DIS
 - Small effect can possibly have a large impact on
- Impact of TPE
 - L/T separations (Constant Q² and x bins)

- No corollary to polarization transfer in DIS or SIDIS
- $\frac{G_E}{G_M}$ highlights the importance of understanding TPE effects in DIS
 - Small effect can possibly have a large impact on
- Impact of TPE
 - L/T separations (Constant Q² and x bins)

 $\frac{d^2\sigma}{d\Omega dE'} = \Gamma[\sigma_T(x,Q^2) + \varepsilon\sigma_L(x,Q^2)]$

$$R = \frac{\sigma_L(x, Q^2)}{\sigma_T(x, Q^2)}$$

<u>TPE effects</u>
ε dependent ?
At large Q² ?

16

- No corollary to polarization transfer in DIS or SIDIS
- Elastic measurements highlight importance of understanding TPE effects in both
 - Small effect can possibly have a large impact on
- Impact of TPE
 - L/T separations: Pion electroproduction cross section

$$\frac{d^{2}\sigma}{d\Omega_{\pi}dM_{x}} = \frac{d\sigma_{T}}{d\Omega_{\pi}dM_{x}} + \varepsilon \frac{d\sigma_{L}}{d\Omega_{\pi}dM_{x}} + \varepsilon \frac{d\sigma_{TT}}{d\Omega_{\pi}dM_{x}} \cos 2\varphi_{pq} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega_{\pi}dM_{x}} \cos \varphi_{pq}$$

- No corollary to polarization transfer in DIS or SIDIS
- Elastic measurements highlight importance of understanding TPE effects in both
 - Small effect can possibly have a large impact on
- Impact of TPE
 - L/T separations: Pion electroproduction cross section

$$\frac{d^{2}\sigma}{d\Omega_{\pi}dM_{x}} = \frac{d\sigma_{T}}{d\Omega_{\pi}dM_{x}} + \varepsilon \frac{d\sigma_{L}}{d\Omega_{\pi}dM_{x}} + \varepsilon \frac{d\sigma_{TT}}{d\Omega_{\pi}dM_{x}} \cos 2\varphi_{pq} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega_{\pi}dM_{x}} \cos \varphi_{pq}$$

- R_{SIDIS} is assumed to be the same as R_{DIS} (R_{SIDIS} = R_{DIS})
- Possible z & p_t-dependence of R_{SIDIS}?
- $R_{SIDIS}^{\pi^+} = R_{SIDIS}^{\pi^-}$?

Impact of TPE?

Measurements of TPE in DIS

- Brookhaven AGS
 - DIS μ^+ and μ^- scattering
 - Beryllium target
 - Q^2 range: 0.5 2.1 (GeV/c)²
- Measured: νW_2^+ , νW_2^- (Assumed R=0.18)
 - $\epsilon(Q^2, \nu) = (\nu W_2^+ \nu W_2^-)/(\nu W_2^+ + \nu W_2^-)$
- Conclusion: at $\langle Q^2 \rangle = 1.09 \, (\text{GeV}/c)^2$
 - *"Contribution of two-photon exchange is less than 1.7% of the inelastic amplitude"*

Measurements of TPE in DIS

- Brookhaven AGS
 - DIS μ^+ and μ^- scattering
 - Beryllium target
 - Q^2 range: 0.5 2.1 (GeV/c)²
- Measured: νW_2^+ , νW_2^- (Assumed R=0.18)
 - $\epsilon(Q^2, \nu) = (\nu W_2^+ \nu W_2^-)/(\nu W_2^+ + \nu W_2^-)$
- Conclusion: at $\langle Q^2 \rangle = 1.09 \, (\text{GeV}/c)^2$
 - *"Contribution of two-photon exchange is less than 1.7% of the inelastic amplitude"*

DIS Two-Photon Exchange Measurements

Ratio of $\frac{\nu W_2^+}{\nu W_2^-}$ in μ^- and μ^+ scattering

Sensitive to the **Real** part of TPE

 $A_n \propto 2Im(M_{1\gamma}M_{2\gamma}^*)$

Beam- and Target- Normal SSA

Sensitive to the Imaginary part of TPE

Target-Normal Single Spin Asymmetry

Polarized proton target

• Measured with both e^- & e^+

Polarized Helium-3

Target-Normal Single Spin Asymmetry

Polarized proton target

• Measured with both e^- & e^+

Polarized Helium-3

Beam-Normal Single Spin Asymmetry

- E08-011
 - 6 GeV parity-violating asymmetry (PVDIS)
- Beam-Normal SSA potential background (dilution) to PVDIS asymmetry
- Large uncertainty

Future Measurements

BNSSA with SoLID

- Will combine each setting sepratley into single Q^2 bins
- $A_n = A_{measured} \pm 2.06 \text{ ppm} : 6.6 \text{ GeV}$

TNSSA with SoLID

- 1. NH₃ (polarized proton)
- 2. ³He (polarized neutron)

Two-Photon Exchange Measurements in SIDIS

Theoretical Predictions for TPE in SIDIS

Andrei Afanasev & Stinson Lee

- E_{beam}=10.6 GeV
- $Q^2 = 2.5 \, \text{GeV}^2$
- y < 0.7
- X = 0.31
- Z = 0.5

E12-14-002

- Precision Measurements and Studies of a Possible Nuclear Dependence of R = $\frac{\sigma_L}{\sigma_T}$
 - Nuclear R_{DIS}
- Approved experiment / scheduled to begin FY 2026

E12-06-104

- Measurement of the Ratio R = $\frac{\sigma_L}{\sigma_T}$ in Semi-Inclusive Deep-Inelastic Scattering
- Approved experiment / scheduled to begin FY 2025

Comparing Kinematics

- Can utilize kinematics from approved experiments E12-14-002 (R_{DIS}) & E12-06-104 (R_{SIDIS})
- Finalizing/optimizing in order to collect data for DIS & SIDIS concurrently
- Proposed positron experiment would leverage the synergy with the electron measurements

Summary and Outlook

- Limited experimental measurements in DIS
 - Non-zero A_y (TNSSA)
 - None in SIDIS
- Several approved DIS experiments to measure Beam- & Target-Normal SSA
- Approved experiments to measure R_{DIS} & R_{SIDIS}
 - Improve radiative corrections
 - Allow for more precise L/T separation
- Utilize kinematics of upcoming $R_{\mbox{\tiny DIS}}$ and $R_{\mbox{\tiny SIDIS}}$ experiments to design experiment
 - Maximize impact
 - Collect data at overlapping kinematics
- Theoretical predictions for SIDIS TPE (maybe DIS)
 - Andrei Afanasev
- Plan to submit proposal to measure TPE in both DIS & SIDIS in Hall C to PAC53