Measurement of the Proton Generalized Polarizabilities with positron and polarized electron beams

Nikos Sparveris

Positron Working Group Workshop

Jefferson Lab, March 2025

Outline

Introduction

Experimental results from unpolarized VCS measurements

Theoretical status, spatial information of proton & polarizability radii

Upcoming experiments in FY-2026 (VCS-II@JLab)

Prospects with positron & polarized electron beams (working progress)

Proton Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of the nucleon to external EM field

Sensitive to the full excitation spectrum

Accessed experimentally through Compton Scattering

RCS: static polarizabilities \rightarrow net effect on the nucleon

PDG

.50 Baryon Summary Table

$$N$$
 BARYONS $(S=0, I=1/2)$

 $p, N^+ = uud; \quad n, N^0 = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.00727646681\pm0.00000000009$ u Mass $m=938.272046\pm0.000021$ MeV $^{[a]}$ $|m_p-m_{\overline{p}}|/m_p<7\times10^{-10},$ CL =90% $^{[b]}$ $|q_{\overline{p}}|/(q_{\overline{p}})=0.9999999991\pm0.00000000009$ $|q_p+q_{\overline{p}}|/e<7\times10^{-10},$ CL =90% $^{[b]}$ $|q_p+q_e|/e<7\times10^{-10},$ CL =90% $^{[b]}$ Magnetic moment $\mu=2.792847356\pm0.000000023$ μ_N $(\mu_p+\mu_{\overline{p}})/\mu_p=(0\pm5)\times10^{-6}$ Electric dipole moment $d<0.54\times10^{-23}$ ecm Electric polarizability $\alpha=(11.2\pm0.4)\times10^{-4}$ fm³ Magnetic polarizability $\beta=(2.5\pm0.4)\times10^{-4}$ fm³ (S =1.2) Charge radius, μ_P Lamb shift $=0.84087\pm0.00039$ fm $^{[d]}$

Charge radius, ep CODATA value = 0.8775 \pm 0.0051 fm [d] Magnetic radius = 0.777 \pm 0.016 fm

Mean life $au > 2.1 \times 10^{29}$ years, CL = 90% [e] $(p \rightarrow \text{invisible})$

Mean life $au > 10^{31}$ to 10^{33} years $^{[e]}$ (mode dependent)

Proton Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of the nucleon to external E

Sensitive to the full excitation spectrum

Accessed experimentally through Compton Scattering

RCS: static polarizabilities \rightarrow net effect on the nucleon

Proton Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of the nucleon to external

Sensitive to the full excitation spectrum

Accessed experimentally through Compton Scattering

RCS: static polarizabilities \rightarrow net effect on the nucleon

Virtual Compton Scattering:

Virtuality of photon gives access to the GPs: $\alpha_E(Q^2) \otimes \beta_M(Q^2) + \text{spin GPs}$

- → spatial distribution of the polarization densities
- → electric & magnetic polarizability radii

Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

"stretchability"

 $\vec{d}_{E \text{ induced}} \sim \alpha \vec{E}$

External field deforms the charge distribution

"alignability"

 $\vec{d}_{M \text{ induced}} \sim \vec{\beta} \vec{B}$

 $\beta_{para} > 0$

 $\beta_{diam} < 0$

Paramagnetic: proton spin aligns with the external magnetic field

Diamagnetic: π -cloud induction produces field counter to the external perturbation

Virtual Compton Scattering

REACTION PLANE

SCATTERING PLANE

Virtual Compton Scattering

DR

valid below & above Pion threshold

Dispersive integrals for Non Born amplitudes

Spin GPs are fixed

Scalar GPs have an unconstrained part

Fit to the experimental cross sections at each Q²

valid only below Pion threshold

Response functions

$$d^5\sigma = d^5\sigma^{BH+Born} + q'_{cm} \cdot \phi \cdot \Psi_0 + \mathcal{O}(q'^2_{cm})$$

$$d^{5}\sigma = d^{5}\sigma^{BH+Born} + q'_{cm} \cdot \phi \cdot \Psi_{0} + \mathcal{O}(q'^{2}_{cm})$$

$$\Psi_{0} = v_{1} \cdot (P_{LL} - \frac{1}{\epsilon}P_{TT}) + v_{2} \cdot P_{LT}$$

$$P_{TT} = [P_{TT \ spin}]$$

$$P_{LT} = -\frac{2M}{\alpha_{em}} \sqrt{\frac{q_{cm}^2}{Q^2}} \cdot G_E^p(Q^2) \cdot \beta_M(Q^2) + [P_{LT \ spin}]$$

utilize DR

Virtual Compton Scattering

Early GP Experiments

 $Q^2 = 0.33 (GeV/c)^2$ measured twice at MAMI:

 $\alpha_E \approx 10^{-3} \, V_N$ (stiffness / relativistic character) Data: non-trivial Q² dependence of α_E (?)

Theory: monotonic fall-off

Higher precision measurements needed

→ Quantify interplay between dia/para-magnetism

Recent Experiments

MAMI A1/1-09 (vcsq2) below threshold

MAMI A1/3-12 (vcsdelta) above threshold

Both experiments utilized the A1 setup at MAMI

A1/1-09 @ MAMI

~ 1.0 GeV beam

 $Q^2 = 0.1 (GeV/c)^2$, 0.2 $(GeV/c)^2$, and 0.45 $(GeV/c)^2$

Figure 5.8: Setting INP: measured $ep \to ep\gamma$ cross section at fixed $q'_{cm} = 112.5~MeV/c$ with respect to φ_{cm} for all the $cos(\theta_{cm})$ -bins. The curves follow the convention of figure 5.6.

Figure from PhD thesis of L. Correa, Mainz / Cl. Ferrand

BH+B --Polarizability --effect

GP effect typically 5% - 15% of the cross section

Polarizability fits:

DR fit:

DR calculation includes full dependency in q'cm

LEX fit:

truncated in q'cm. Suppress contribution from higher order terms

A1/1-09 @ MAMI

For LEX the higher order terms have to be kept small / under control

$$d^5\sigma = d^5\sigma^{BH+Born} + q'_{cm} \cdot \phi \cdot \Psi_0 + \mathcal{O}(q'^2_{cm})$$

Refined analysis procedure / phase space masking to keep these terms smaller than ~ 2%-3% level

Figure 3.13: (Left) behavior of $\mathcal{O}^{DR}(q_{cm}'^2)$ in the $(cos(\theta_{cm}), \varphi_{cm})$ -plane at $q_{cm}' = 87.5 \ MeV/c$ and (right) two-dimensional representation of the angular region where $\mathcal{O}^{DR}(q_{cm}'^2) < 2\%$ (blue), the red squares correspond to the two areas of interest to perform the GP extraction.

MAMI Results

MAMI Results

Revisiting the early MAMI data

Analysis revisited at $Q^2=0.33$ GeV² (unpublished):

The a_E puzzle still holds

Jefferson Lab

VCS-I Experiment (E12-15-001) in Hall C

High precision measurements targeting explicitly the kinematics of interest for α_{E}

Hall C: SHMS, HMS

4.56 GeV

20 μΑ

Liquid hydrogen 10 cm

cross sections & azimuthal asymmetries

$$A_{(\phi_{\gamma^*\gamma}=0,\pi)} = \frac{\sigma_{\phi_{\gamma^*\gamma}=0} - \sigma_{\phi_{\gamma^*\gamma}=180}}{\sigma_{\phi_{\gamma^*\gamma}=0} + \sigma_{\phi_{\gamma^*\gamma}=180}}$$

sensitivity to GPs

suppression of systematic asymmetries

VCS-I results

Nature 611, 265 (2022)

VCS-I results

Nature 611, 265 (2022)

Electric GP

Magnetic GP

Is the observed a_F structure coincidental or not?

If true: Measure the shape precisely \rightarrow input to theory If not: We are able to show it with more measurements

Strong tension between world data (?)

Things we do not yet understand well?

Underestimated uncertainties? ...

Magnetic GP: Large uncertainties & discrepancies Disentangle para/dia-magnetism in the proton

Ability to measure α_E and β_M with superb precision and with consistent systematics across Q^2

Theory: BXPT

Eur. Phys. J. C (2017) 77:119 DOI 10.1140/epjc/s10052-017-4652-9 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

Vadim Lensky^{1,2,3,a}, Vladimir Pascalutsa¹, Marc Vanderhaeghen¹

- ¹ Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- ² Institute for Theoretical and Experimental Physics, Moscow 117218, Russia
- ³ National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia

Theory: Lattice QCD

Lattice QCD results for the static polarizabilities

Next step: Lattice QCD calculations for the GPs

Analysis of the resonance contributions to the low-energy behavior of $a_E(Q^2) + \beta_M(Q^2)$ within holographic QCD

Nucleon electric and magnetic polarizabilities in Holographic QCD

Federico Castellani^{a,b}

aINFN. Sezione di Firenze.

Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy.

E-mail: federico.castellani@unifi.it

Abstract: Novel experimental results for the proton generalized electric polarizability, suggest an unexpected deviation from current theoretical predictions at low momentum transfer squared Q^2 . Motivated by this puzzle, we analyze the resonance contributions to the sum of the generalized electric and magnetic nucleon polarizabilities $\alpha_E(Q^2)$ and $\beta_M(Q^2)$, within the Holographic QCD model by Witten, Sakai, and Sugimoto (WSS). In particular, we account for the contributions from the first low-lying nucleon resonances with spin 1/2 and 3/2 and both parities. After having extrapolated the WSS model parameters to fit experimental data on baryonic observables, our findings suggest that the resonance contributions alone do not solve the above-mentioned puzzle. Moreover, at least for the proton case, where data are available, our results are in qualitative agreement with resonance contributions extracted from experimental nucleon-resonance helicity amplitudes.

^bDipartimento di Fisica e Astronomia, Universitá di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy.

Spatial dependence of induced polarizations

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs \Rightarrow spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field

Phys. Rev. Lett. 104, 112001 (2010) M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

Light (dark) regions → largest (smaller) values (photon polarization along x-axis, as indicated)

Spatial dependence of induced polarizations

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field

x-y defines the transverse plane with the z-axis being the direction of the fast-moving proton

Polarizability radii

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \bigg|_{Q^2=0}$$

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

Polarizability radii

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \bigg|_{Q^2=0}$$

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2=0}$$

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

$$\langle r_{\beta_M}^2 \rangle = 0.63 \pm 0.31 \text{ fm}^2$$

Upcoming Experiments

and prospects

with positron & polarized electron beams

VCS-II (E12-23-001) @ JLab

Extend Q^2 range & targeted measurements to fully exploit the sensitivity to the EM GPs

Production ($E_o = 1.1 \text{ GeV}$): 6 days

Production ($E_o = 2.2 \text{ GeV}$): 53 days

Studies (optics/dummy/calibrations): 3 days

Total: 62 days

VCS-II Projected Measurements

Q2 (GeV2)

Can we measure with a different method?

Yes: positrons and/or beam spin asymmetries

Positrons allow for an <u>independent path</u> to access experimentally the GPs

Eur. Phys. J. A 57 (2021) 11, 316

Virtual Compton scattering at low energies with a positron beam

Barbara Pasquinia,1,2, Marc Vanderhaeghenb,3

³Institut f
ür Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg Universit
ät, D-55099 Mainz, Germany

- (a): The beam-charge asymmetry as a function of the photon scattering angle at Q2 = 0.43 GeV 2.
- (b) & (c): The electron and positron beam-spin asymmetry as a function of the photon scattering angle for out-of-plane kinematics.

Unpolarized beam charge asymmetry (BCA): $A_{UU}^C = \frac{(d\sigma_+^+ + d\sigma_-^+) - (d\sigma_+^- + d\sigma_-^-)}{d\sigma_+^+ + d\sigma_-^+ + d\sigma_-^- + d\sigma_-^-}$

Lepton beam spin asymmetry (BSA): $A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$

¹Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy

²Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy

Unpolarized beam charge asymmetry (BCA): $A_{UU}^{C} = \frac{(d\sigma_{+}^{+} + d\sigma_{-}^{+}) - (d\sigma_{+}^{-} + d\sigma_{-}^{-})}{d\sigma_{+}^{+} + d\sigma_{-}^{+} + d\sigma_{-}^{-} + d\sigma_{-}^{-}}$

 e^- : ~ 1 week @ 50 μA and

 e^+ : ~ 10 weeks @ ~ μA

BCA measurements offer superb precision!!

Lepton beam spin asymmetry (BSA):
$$A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$$

electrons

Projected measurements with SHMS / HMS

Lepton beam spin asymmetry (BSA):
$$A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$$

- e⁻ (pol. 85% @ 70 μA)
- ~ 2 weeks of beamtime

Lepton beam spin asymmetry (BSA): $A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$

Can take advantage of the VCS-II beam-time (2026) for part of the kinematics that overlap provided that the beam is polarized

Lepton beam spin asymmetry (BSA):
$$A_{LU}^e = \frac{d\sigma_+^e - d\sigma_-^e}{d\sigma_+^e + d\sigma_-^e}$$

e- (pol. 85% @ 70 μA)

~ 2 weeks of beamtime

or

e+ (pol. 60% @ 50 nA)

~ 3 orders of magnitude more beamtime

Hall C (SHMS / HMS)

 e^- : ~ 1 week @ 50 μA

 e^+ : ~ 10 weeks @ 5 μA

BSA (electrons or positrons)

- e⁻ (pol. 85% @ 70 μA)
- ~ 2 weeks of beamtime

or

- e⁺ (pol. 60% @ 50 nA)
- ~ 3 orders of magnitude more beamtime

Summary

GPs: fundamental properties of the proton

Insight to spatial deformation of the nucleon densities under an applied EM field, polariz. mechanisms / interplay of para/dia-magnetism in the proton, polarizability radii, ...

Experiment is ahead of theory:

Vibrant experimental program at JLab is ongoing Stringent experimental constraints to theoretical predictions & benchmark data for LQCD Theoretical challenges

Future experiments:

Pin down the shape of the a_E structure (if it exists?) & provide important input for the theory

BS asymmetries & positrons provide a powerful path to measure via a different experimental channel and conduct an independent cross-check