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The landscape: where is the “new"” physics?
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* New particles interact too weakly to be observed?
* Are other mass ranges or new interactions needed?




The landscape: where is the “new” physics?
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* Are tension caused by and incomplete understanding of hadronic processes?




... diverse puzzles, common solutions? |
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*Only the interplay of theoretical, astronomical observations and experimental laboratory progress will
enable a complete understanding!




Similar challenges, common solution

> Strong discovery potential for new physics phenomena

> Powerful tools to sharpen our understanding of strongly interacting systems




Unlocking physics with hadrons and nuclei
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Hadrons and Nuclei as Discovery Tools
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> Strong discovery potential for new physics phenomena

> Powerful tools to sharpen our understanding of strongly interacting systems




CRC1660

Hadrons and Nuclei as Discovery Tools

B H N

Beyond Interface
Standard Model between Hadron
Searches involving and Nuclear
Hadrons Physics

Nuclei
and
Astrophysics

X SR MBR A2 «=PSi=




New experimental opportunities

MESA - Mainz Energy-Recovering Superconducting Accelerator

DarkMESA





https://video.uni-mainz.de/Panopto/Pages/Viewer.aspx?id=fb1b5ba1-cc94-40d2-8c31-b24800eaefc0

MAGIX

* High-resolution spectrometers (Ap/p <104)

* Cryogenic
windowless gas-jet
target

« Detection of low-energy recoil
particles




P2

e L=2.4103s1Tcm2for60cmH
target

» Solenoid spectrometer with
integrating Cherenkov detectors

- State of the art digitization
electronics for PV experiment:
transient digitizer

* Momentum transfer determined
by HV-MAPS tracking detectors

* MicroMegas tracking detectors
for asymmetry measurements
at backward angles.




DarkMESA

* 1022 electron/year in beam
dump

* Calorimeter 25 m behind beam
dump

« Experimental program to begin
with a matrix of 25 PbF, crystals y @ . -1




New experimental opportunities

MESA - Mainz Energy-Recovering Superconducting Accelerator

* Energy-recovery mode
for high intensity
(MAGIX)

* Extracted-beam mode for
high polarisation (P2)

* Beam dump experiment
(DarkMESA)

Multi-purpose facility for next-g
generation low-energy
precision physics experiments



Pillar B
Big questions:

Do we find cracks in the SM, and
what is the nature of dark matter? CRC1660
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Pillar B
Big questions:

Do we find cracks in the SM, and
what is the nature of dark matter?

Dependence on energy scale
constrained by SM

Tension between
measurements at Z-pole

Low-energy sensitive to new
physics

Mz4 =100 MeV
P2 SLAC E158
Hydrogen -
RBY
I P2 Qweak )

Carbon

Future

*¥LHC

(ATLAS,CMS,LHCb)
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Big questions: ,
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Pillar B
Big questions:

Do we find cracks in the SM, and

what is the nature of dark matter?

« Data driven constraints
from weak radius
measurements

« Complements precision
measurement of neutron
lifetime and improved
branching ratio of kaon
decays

| ......> P2@MESA
[ Data driven

— PDG 2018

P PDG 2024 i
- Gorshteyn et al ‘i,

Exp 0p O¢ Oyg

Ag
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0.970 0.971 0.972

Overconstraining the CKM matrix at the per mille level

0.973 0.974 0.975
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Pillar B
Big questions:

Do we find cracks in the SM, and
what is the nature of dark matter?

H

B N

Interplay with H and N:

Advance precision of hadronic and
nuclear processes and properties
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ol COMING SOON!

True discrepancy or insufficient understanding?




Pillar N
Big questions:

Do we understand nuclear equation of
state, stellar nucleosynthesis, few-body CRC1660
nuclear systems?
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Pillar N
Big questions:

Do we understand nuclear equation of
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Pillar N A <
Big questions:

Do we understand nuclear equation of
state, stellar nucleosynthesis, few-body
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Pillar N
Big questions:

Do we understand nuclear equation of
state, stellar nucleosynthesis, few-body
nuclear systems?
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Combined Theoretical Analysis of the Parity-Violating Asymmetry for “Ca and 2%Pb

Paul-Gerhard ReinhardO,l’* Xavier Roca-Maza(ID,z’T and Witold Nazarewicz®>*

“We conclude that the simultaneous accurate description of the PV
asymmetry in calcium and lead cannot be achieved by our models that
accommodate a pool of global nuclear properties ..."

PRL 129, 232501 (2022)




Pillar N
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Pi"ar N Elastic (e,e') Cross Section

¢ MAMI data 20°

Big questions: ¥ MAMI data 25°

I Ab initio theory

Do we understand nuclear equation of
state, stellar nucleosynthesis, few-body
nuclear systems? y

B N
Interplay with B and H: > Interpretation of neutrino oscillation data
Nuclear targets and nuclear theory also requires precise neutrino-nucleus cross sections

crucial in H and B as input.

High-precision experiments anchored by same underlying theory: QCD, chiral EFT




Pillar H
Big questions:

Do we know hadron structure at precision
needed for atomic spectroscopy and neutrino CRC1660
Cross sections ?
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Pillar H
Big questions:

Do we know hadron structure at precision
needed for atomic spectroscopy and neutrino

Cross sections ?

new
target

ttt i - Bornauer (Mains 2010)
« Xiong (JLab 2019)

¥ electrons

h : “target nuclei”
indowless,
thin, point-like

=[] =

+ PDG before 2016

a =

Red svmbols: CRC researchers
4 : ep-scattering

@: p atoms

® : H spectroscopy

& : Lattice QCD

2008 2010 2012 2014 2016 2018 2020 2022 2024 year

Major error sources at MAGIX (projected) compared to Al.

Statistics

Energy Detector Vertex Stray  Background
Cut i Efficiency Acceptance Fields




Pillar H

Big que5tions: ) mEm Experiment: Systematic

I Experiment: Statistical

EE Theory: QED

Do we know hadron structure at precision B == Theory: nuclear 2y-exchange

. . mmm Theory: nucleon 2y-exchange
needed for atomic spectroscopy and neutrino Theory: nuclear 3y-exchange
Cross sections ?
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Interplay with B and N: Nuclear radii measured in muonic

Same theory: lattice QCD, effective field spectroscopy will benchmark nuclear theory
theories (EFTs) used in hadronic corrections (TPE on nucleon and nuclear targets!)

in B and benchmarked by N




Complementing MESA
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Complementing MESA

Gorchtein and Horowitz, PRC 77, 044606 (2008).
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Complementing MESA

% A2 =PSi=
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Timeplan

cnex I TR mA A

Funding Period 1 Funding Period 2 Funding Period 3

Emax = 55MeV Emax = 155MeV + ERL Emax = 155MeV + ERL

H H Forward H Forward H Forward
i) Backward Data Taking | Data Taking Il Data Taking llI
W MREX Neutron-Skin 298pPb Neutron-Skin #8Ca
2000 h 6000 h 8000 h
DP Invisible Dilepton DP Visible
ERL e-prod. ERL @Displaced Vertex

Proton FF, Ge, Gm

Dark Photon (DP) DP Visible
Beam Dump (BD) BD/ERL

Proton FF, Ge
’( - -
Ty c R (v,q)
(v,a) BD (v,n) BD (v,a) ERL ERL -+ 0° Tagger

12C transition *He transition Deuterium 4He inclusivelll® 3*He exclusive
FF BD FF ERL ERL ERL ERL




Unlocking physics with hadrons and nuclei...
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