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Abstract

The primary experimental goal of studies of hadronic parity nonconservation
(PNC) has long been the isolation of the isovector weak nucleon–nucleon
interaction, expected to be dominated by long-range pion exchange and en-
hanced by the neutral current. In meson-exchange descriptions, this interac-
tion, together with an isoscalar interaction generated by ρ and ω exchange,
dominates most observables. Both amplitudes have been used to compare
and check the consistency of experiments, yet no evidence for isovector
hadronic PNC has been found. We argue that the emphasis on isovector
hadronic PNC was misplaced. The large-N c expansion provides an alterna-
tive and theoretically better-motivated simplification of effective field the-
ories (EFTs) of hadronic PNC, separating the five low-energy constants
(LECs) into two of leading order (LO) and three of next-to-next-to-leading
order (N2LO). We show that this large-N c LEC hierarchy accurately de-
scribes all existing data on hadronic PNC and discuss opportunities to further
test the predicted large-N c LEC hierarchy. This formalism—combined with
future experiments—could lead to rapid progress in the next 5 years. We dis-
cuss the impact of anticipated new results and describe future experiments
that can yield more precise values of the LO LECs and help to isolate the
N2LO ∼ 10% corrections.
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1. INTRODUCTION

For more than two decades, the field of hadronic parity nonconservation (PNC) has struggled:
The theoretical picture has been muddled, and very few new experiments have been done to help
clarify matters. This situation is about to change. The creation of a high-intensity cold neutron
beam line at the Spallation Neutron Source (SNS), as well as upgrades at the National Institute
of Standards and Technology (NIST), will enable a new generation of experiments. Results from
the first experiment performed at the SNS, the NPDGamma Collaboration’s measurement of
the γ -ray asymmetry Aγ (�n p → dγ ), should be announced soon (1; see http://meetings.aps.
org/link/BAPS.2015.APR.S6.2, http://online.kitp.ucsb.edu/online/nuclear-c16/). Further-
more, the feasibility of a new kind of “measurement”—the evaluation of PNC nucleon–nucleon
(NN) scattering amplitudes from lattice QCD (LQCD)—has been demonstrated (2).

While such progress was being made, other developments have brought more clarity to the
field, changing some of our prejudices and providing a new context for interpreting future results.
First, it was discovered that the agreement between past experiments was better than had been
recognized (3): Most of the tension that had existed was induced by flaws in global analyses of PNC.
Second, a new proposal emerged for organizing the low-energy constants (LECs) that characterize
hadronic PNC, based on large-N c QCD (4, 5). We show here that this proposal accounts simply
for all existing data—while illustrating that some of our past assumptions about hadronic PNC
patterns were not justified. We describe these developments and discuss their implications for
past and anticipated experiments, performing a new global experimental analysis that exploits the
large-N c LEC hierarchy.

NPDGamma is the latest effort to address one of the field’s primary goals, measurement of PNC
in the isovector NN interaction. In meson-exchange descriptions, this interaction is dominated by
long-range pion exchange, with one πNN vertex governed by the weak interaction and the other
by the strong. The weak πNN vertex h1

π has been of particular interest because of the expectation
that it could help separate the roles of W and Z boson exchange in hadronic PNC, associated with
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the four-currents JW and JZ that appear in the low-energy current–current Hamiltonian (6, 7)

H = GF√
2

[
J†

W JW + J†
ZJZ

]
. 1.

The charged current can be decomposed into two components, JW = cos θcJ0
W + sin θcJ1

W , where
θc is the Cabibbo angle. The current J0

W drives the u → d transition and carries isospin and
strangeness �I = 1 and �S = 0, whereas J1

W drives the u → s transition and carries �I = 1/2
and �S = −1. The neutral current also has two components, JZ = J0

Z+J1
Z; the first transforms as

�I = 0 and �S = 0, and the second as �I = 1 and �S = 0. The current–current weak �S = 0
NN interaction is then

H�S=0 = GF√
2

[
cos2 θcJ

0 †
W J0

W + sin2 θcJ
1 †
W J1

W + J0 †
Z J0

Z + J1 †
Z J1

Z + J0 †
Z J1

Z + J1 †
Z J0

Z

]
. 2.

The importance of isospin to this Lagrangian is clear: The symmetric product of two �I = 1
J0

W currents transforms as �I = 0 and 2, whereas the symmetric product of two �I = 1/2 J1
W

currents transforms as �I = 1. Consequently, the charged-current contribution to the �I = 1
weak NN interaction is suppressed by tan2 θc ∼ 0.04, relative to the charged-current contributions
to the �I = 0 and 2 interactions. On the basis of this argument, it was concluded that the �I = 1
component of the NN interaction would be dominated by the neutral current, which is of particular
interest because it cannot be studied in strangeness-changing interactions due to the absence
of tree-level flavor-changing neutral currents. The expectation of an important neutral-current
contribution to the �I = 1 PNC NN interaction has influenced PNC analyses since the 1980s.

The opportunity to take advantage of nuclei as laboratories to test an otherwise unconstrained
Standard Model interaction has motivated both experiment and theory. By the mid 1980s, several
advances had occurred:

1. Credible meson-exchange models of hadronic PNC had been developed that established
“best values” and reasonable ranges for PNC weak couplings [e.g., the couplings of DDH
(8)], including h1

π .
2. A series of successful experiments measuring the circular polarization of the γ -ray from

the decay of the 1.081-MeV JPI= 0−0 level in 18F had been performed, testing the T= 1
mixing of this state with the nearby 0+1 level at 1.042 MeV (9–13), but finding no signal at
the ∼10−4 level.

3. A method to extract a limit on h1
π from these measurements was developed, exploiting a re-

lationship between hadronic PNC and axial-charge β decay, largely eliminating any depen-
dence on the choice of nuclear wave functions (14–16). Several high-quality measurements
of the β decay rate were made (16).

This led to a surprising conclusion: The 18F result, by itself or when combined with other mea-
surements in a general hadronic PNC analysis (17), established an upper bound on h1

π , relative
to competing isoscalar amplitudes, that was approximately a factor of six below the DDH best
value. The isoscalar amplitudes are somewhat stronger than expected, and the isovector consid-
erably weaker. The analogy between this result and the �I = 1/2 rule in strangeness-changing
decays—where a similar anomaly in the ratio of �I = 3/2 to �I = 1/2 amplitudes is found—
was immediately noted (17). These results show that the neutral current, once embedded in the
strongly interacting environment of the nucleon, produces an effective coupling to the nucleon
that is considerably weaker than had been expected from the elementary coupling to the quarks.

These results helped motivate the NPDGamma effort. The collaboration has worked toward
its goal of measuring h1

π since approximately 2000, beginning with an earlier version of the exper-
iment at LANSCE (18), then moving to the SNS to exploit the high-intensity cold neutron beam
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line that became available there (1; see http://meetings.aps.org/link/BAPS.2015.APR.S6.2,
http://online.kitp.ucsb.edu/online/nuclear-c16/). The goal has been to reach a sensitivity cor-
responding to Aγ ∼ 10−8 (19), verifying the 18F result and possibly pushing beyond, to a detection
of h1

π . Experimental issues at LANSCE, including a weaker-than-anticipated neutron flux, led
to a final result of Aγ = [−1.2 ± 2.1(stat.) ± 0.2(syst.)] × 10−7 (18), comparable to the bound
that had been set earlier by others (20). The effort to reach the 10−8 level was renewed on the
high-intensity SNS beam line (see http://meetings.aps.org/link/BAPS.2007.DNP.CD.5). The
DDH best-value prediction for Aγ is ∼5× 10−8.

The purpose of this review is to reexamine past experiments and consider anticipated new
results, including those from NPDGamma, in the context of a new paradigm for hadronic PNC
that arises when effective field theory (EFT) is combined with large-N c requirements for treating
the EFT’s LECs. In the context of this scheme, not only 18F but the entire set of hadronic PNC
observations conform to a simple pattern. Our goal is to describe recent developments that have
led to this satisfying conclusion. These include the following:

1. Modified constraints (3) extracted from the longitudinal asymmetry AL( �pp), at both low and
intermediate energies, obtained when certain inconsistencies in past global hadronic PNC
analyses were corrected.

2. An improved understanding of EFT approaches to hadronic PNC, ironing out some ap-
parent differences between EFT descriptions (21–23) as well as establishing their effective
equivalence to the traditional meson-exchange treatment, when the latter is restricted to
low energies. The EFT approach leads to a description quite similar to Danilov’s (24–26)
early analysis in terms of S–P amplitudes, involving five degrees of freedom (or perhaps six
if nuclear systems like 18F are used, where the pion’s range is important).

3. As we lack the data needed to perform a five- or six-dimensional analysis, the field has
long employed simpler analyses with a smaller number of “most important” couplings. In
the DDH meson-exchange model, h1

π and a corresponding vector-meson isoscalar coupling
have been employed as the leading terms. However, as discussed below, this choice is both in
conflict with experiment and lacking in theoretical justification. An alternative organizational
scheme has recently been proposed, based on the large-N c expansion, that appears to be
compatible with all we have learned about hadronic PNC to date. This expansion identifies
two alternative leading couplings, and predicts that subleading corrections to this scheme
will enter at the relative order 1/N 2

c ∼ 10%. Here we assume that this suppression is effective
despite the expected enhancement from long-range pion exchange.

4. This combined EFT/large-N c approach leads to a leading-order (LO) two-dimensional
(2D) characterization of hadronic PNC that uses the isotensor 1S0–3P0 amplitude together
with a specific combination of the isoscalar 3S1–1P1 and 1S0–3P0 amplitudes. We derive
the LO LECs from current experiments, and show the general concordance between PNC
observations and the coupling hierarchy predicted by the large-N c scheme.

5. We describe further opportunities to test this picture, through new experiments and by
using LQCD.

6. The 18F and NPDGamma experiments probe observables that are blind to the LO couplings
and arise only through N2LO corrections. Thus, the absence of a 18F signal is not in conflict
with theory, but is in fact consistent with large-N c predictions. We show that by combining
the 18F result with the anticipated NPDGamma measurement, important constraints can
be placed on N2LO couplings.

This article reviews the first three developments above, then addresses the last three points by
performing a new global analysis using the EFT/large-N c formalism.
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2. BACKGROUND

The violation of parity invariance, suggested by Lee & Yang (27) in 1956, was discovered exper-
imentally in 1957 by Wu et al. (28) via measurement of the J· pe correlation parameter in the β

decay of polarized 60Co. It was immediately recognized that there should exist a corresponding
PNC component of the NN interaction. The first experimental search for PNC was conducted in
1957 by Tanner (29), who sought evidence in the 19F(p , α)16O reaction. Although the sensitivity
of this measurement was not sufficient to observe a PNC signal, it was the first of a series of such
experiments, which have continued to the present time, to detect subtle weak interaction effects in
systems with strong and electromagnetic interactions. A summary can be found in various review
articles (3, 17, 30, 31).

PNC has been observed in many hadronic systems, usually in the form of some pseudoscalar
such as an asymmetry or a circular polarization, including cases where rather spectacular en-
hancements of the signal arise. Examples include the 2% photon circular polarization in the
electromagnetic decay of an isomer of 180Hf (32),

Aγ (180Hf∗ → 180Hf + �γ ) = −(1.66± 0.18)× 10−2, 3.

and the nearly 10% longitudinal analyzing power for the scattering of polarized neutrons from
139La (33),

Ah(�n + 139La) = (9.55± 0.35)× 10−2. 4.

These amplifications originate from chance nuclear-level near-degeneracies: States of the same
spin but opposite parity can mix through the hadronic PNC interaction, generating a parity
admixture inversely proportional to the energy splitting between the levels. Indeed, as the natural
scale of hadronic PNC effects is ∼GFm2

π ∼ 10−7 (17), it is apparent that such enhancements can
be many orders of magnitude.

With the development of theoretical frameworks for understanding hadronic PNC quantita-
tively, the field’s attention switched from simply finding examples of PNC to identifying systems
where PNC could be both measured and reliably interpreted in terms of the underlying PNC NN
interaction. In an ideal world, such measurements would be carried out by studying the simple
NN systems—pp, np, and pn—in the allowed threshold partial wave channels. As only one such
measurement has been done at high precision, the field turned to few-nucleon systems, where
techniques exist for solving the Schrödinger equation with realistic strong potentials. Certain
selected light nuclei also provided reliable hadronic PNC constraints. Notable among these are
18F and 19F, where parity doublets enhance the experimental signal, and axial-charge β decay
measurements can remove almost all of the usual nuclear structure uncertainties.

2.1. The Desplanques, Donoghue, and Holstein (DDH) Potential

Helping to drive these developments were theoretical descriptions of hadronic PNC defining what
needed to be measured, and providing benchmark estimates of potential hadronic PNC signal
sizes. The “standard” formalism for hadronic PNC experimental analysis became the meson-
exchange model of DDH (8), which expresses the hadronic PNC potential in terms of the usual
parity-conserving strong interaction meson–nucleon couplings defined by

Hst = igπNN N̄ γ5τ · π N + gρ N̄
(

γμ + i
χρ

2mN
σμνkν

)
τ · ρμ N

+ gω N̄
(

γμ + i
χω

2mN
σμνkν

)
ωμ N , 5.

www.annualreviews.org • A New Paradigm for Hadronic Parity Nonconservation 73
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where mN is the nucleon mass. The numerical values assigned to the various couplings by DDH are
g2

πNN/4π = 14.4, g2
ρ/4π = (1/9)g2

ω/4π = 0.62, χρ = κp − κn = 3.70, and χω = κp + κn = −0.12.
DDH employed the phenomenological PNC weak meson–nucleon Hamiltonian

Hwk = i
h1

π√
2

N̄ (τ × π )zN

+ N̄

(
h0

ρτ · ρμ + h1
ρρ

μ
z +

h2
ρ

2
√

6
(3τzρ

μ
z − τ · ρμ)

)
γμγ5 N

+ N̄
(
h0

ωωμ + h1
ωτzω

μ
)
γμγ5 N − h1′

ρ N̄ (τ × ρμ)z
σμνkν

2mN
γ5 N . 6.

When Equations 5 and 6 are combined and a nonrelativistic reduction is made, a PNC potential
is obtained with a specific spin and isospin structure, together with specific radial forms, governed
by the meson masses. The coefficients of this potential are bilinears in the weak and strong
couplings—these products are the parameters that can be extracted.

Provided that a consistent set of strong couplings is employed in global analyses, such a program
would determine values for the weak couplings h1

π , h0,1,2
ρ , h1′

ρ , and h0,1
ω . In their original work,

DDH provided theoretical estimates for these parameters—while emphasizing their very large
uncertainties. DDH provided a best guess for each parameter (which they referred to as the “best
value”), as well as a “reasonable range” to provide a measure of the uncertainty (Table 1).

Despite a great deal of experimental and theoretical research, most of this uncertainty remains
today. The main obstacle to reducing the reasonable ranges has been a lack of reliable experimental
constraints. Critical examinations of the available data have led to the conclusion that only four
observables place important constraints on hadronic PNC—the analyzing power for the scattering
of longitudinally polarized protons off protons, the circular polarization of the γ -ray emitted from
the 0−0 excited state in 18F, the analyzing power for the scattering of longitudinally polarized
protons off 4He, and the γ decay asymmetry from the decay of the polarized 1

2
− 1

2 state in 19F.
Both of the last two measurements involve odd-proton systems, and consequently yield almost the
same constraint, whereas the 18F result is only an upper bound (although a very significant one,
given the DDH estimate of the best value for h1

π ).
To improve on the current situation, one needs either several new, interpretable experimental

results or a strategy that reduces the number of theoretical variables that must be determined.
Such a strategy has recently been proposed, based on large-N c QCD. As this approach is most
naturally described in terms of EFT treatments of hadronic PNC, we first describe that formalism
and its relationship to the DDH potential.

Table 1 The weak meson–nucleon couplingsa,b

DDH (8) DDH (8)
Coupling reasonable range “best value” DZ (34) FCDH (35)

h1
π 0→ 11 +4.6 +1.1 +2.7

h0
ρ 11→−31 −11 −8.4 −3.8

h1
ρ −0.4→ 0 −0.2 +0.4 −0.4

h2
ρ −7.6→−11 −9.5 −6.8 −6.8

h0
ω 5.7→−10.3 −1.9 −3.8 −5.0

h1
ω −1.9→−0.8 −1.2 −2.3 −2.3

aAs estimated in References 8, 34, and 35.
bAll numbers are quoted in units of 10−7. Following the original treatment by DDH (8), h1 ′

ρ has been set to zero; it can be
shown that at low energies this coupling is redundant (3).

74 Gardner · Haxton · Holstein
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2.2. The Effective Field Theory Picture

Although the DDH meson-exchange approach clearly contains some model dependence, it has
stood as the standard language for analyzing low-energy PNC experiments for nearly four decades.
In recent years, however, an alternative to the DDH potential has been developed, based on
pionless EFT. Pionless EFT provides a model-independent formalism for describing experiments
performed at momentum scales well below the pion mass, where the pion interaction becomes
local. Most applications to PNC scattering satisfy this condition (36), at least with respect to the
external momenta of the scattered particles. (If a nuclear bound state is involved, however, the
nuclear Fermi momentum can also play a role.)

This approach was introduced in studies of hadronic PNC by Zhu et al. (21), although the
roots of this kind of analysis reach back to Danilov’s (24, 25) partial wave analysis and to the
use of contact potentials by Desplanques & Missimer (37). The Zhu et al. formulation contained
redundant terms that were later identified and eliminated by Girlanda (22). The EFT method was
also developed by Phillips et al. (23). In pionless EFT, the NN interaction is represented by a small
number of empirically determined contact terms. In the parity-conserving case, for example, there
are only two, representing scattering lengths in the 1S0 and 3S1 channels. In the parity-violating
case, however, there exist five low-energy S–P channels, and consequently five associated LECs.

Although the DDH and EFT approaches appear to be quite distinct, they are in fact
operationally equivalent at the very low energies where pionless EFT is valid. This point was
recently made by constructing an effective contact interaction that maps onto Danilov’s partial
wave analysis (3):

V PNC
LO (r) = �

1S0−3P0
0

(
1
i

←→∇ A

2mN

δ3(r)
m2

ρ

· (σ 1 − σ 2)− 1
i

←→∇ S

2mN

δ3(r)
m2

ρ

· i (σ 1 × σ 2)

)

+ �
3S1−1P1
0

(
1
i

←→∇ A

2mN

δ3(r)
m2

ρ

· (σ 1 − σ 2)+ 1
i

←→∇ S

2mN

δ3(r)
m2

ρ

· i (σ 1 × σ 2)

)

+ �
1S0−3P0
1

(
1
i

←→∇ A

2mN

δ3(r)
m2

ρ

· (σ 1 − σ 2)(τ1 z + τ2 z)

)

+ �
3S1−3P1
1

(
1
i

←→∇ A

2mN

δ3(r)
m2

ρ

· (σ 1 + σ 2)(τ1 z − τ2 z)

)

+ �
1S0−3P0
2

(
1
i

←→∇ A

2mN

δ3(r)
m2

ρ

· (σ 1 − σ 2)(τ 1 ⊗ τ 2)20

)
, 7.

where (τ 1 ⊗ τ )20 ≡ (3τ1 zτ2 z − τ 1 · τ 2)/
√

6. The subscripts on the LECs denote the change in
isospin �I induced by the associated operator, and the superscripts indicate the specific PNC
transition. With these operator definitions, the various �s are dimensionless. Of course, there
must exist a matching to the low-energy form of the DDH potential, yielding (3)

�
1S0−3P0
0 = −gρ (2+ χρ )h0

ρ − gω(2+ χω)h0
ω

DDH�
1S0−3P0
0 = 210,

�
3S1−1P1
0 = −3gρχρh0

ρ + gωχωh0
ω

DDH�
3S1−1P1
0 = 360,

�
1S0−3P0
1 = −gρ (2+ χρ )h1

ρ − gω(2+ χω)h1
ω

DDH�
1S0−3P0
1 = 21,

�
3S1−3P1
1 =

√
1
2 gπNN

(
mρ

mπ

)2
h1

π + gρ (h1
ρ − h1

ρ

′)− gωh1
ω

DDH�
3S1−3P1
1 = 1340,

�
1S0−3P0
2 = −gρ (2+ χρ )h2

ρ
DDH�

1S0−3P0
2 = 160, 8.
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where on the right the DDH-predicted “best values” have been employed, yielding values for
the LECs (in units of 10−7). Similarly, the EFT potentials of Girlanda (22) and Zhu et al. (21)
must also be equivalent to Equation 7. The translation between the various formulations is given
in the so-called Rosetta stone, table 2 of Reference 3.

This comparison shows that the DDH potential is effectively equivalent to pionless EFT at
the low energies for which the latter is valid. In this regime, an S–P partial wave description is
adequate, and five linear combinations of the seven DDH weak couplings describe the physics.
The redundancy among these parameters is broken when P–D interactions become important.
Then the meson masses also play an explicit role, as higher partial wave channels allow one to
detect the noncontact form of the radial interaction. One can think of the DDH interaction as an
EFT that is married to a physically motivated model, for the purpose of extending the interaction’s
range of validity to higher momenta.

However, regardless of what formulation one uses, there remains a major problem: Five pa-
rameters are needed to describe hadronic PNC in the low-momentum limit, but we do not have
five reliable experimental constraints. Thus, some simplification is needed beyond that provided
by EFT or by a low-momentum reduction of the DDH potential.

2.3. Experimental Constraints and Two-Dimensional Reductions

A standard display of experimental constraints on hadronic PNC was introduced in Reference 17
and has been in wide use ever since. It employs two parameters, not five, and was derived on
largely empirical grounds—an after-the-fact examination of how theoretical predictions of PNC
observables depend on the underlying weak couplings. In light of the discussion of the large-N c

expansion in Section 3, below, we sketch here how this standard display came about.
The current version of this plot is shown in Figure 1. It includes constraints from four types

of experiments:

–40
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h ρ
   +
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.7

 h
ω   (

×1
07 )

–(
h ρ

 +
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.7
h ω
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0.7 hρ  
   – hω 

  (×107)
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pp
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Figure 1
(a) The standard plot of experimental constraints on the DDH [Desplanques, Donoghue, and Holstein (8)]
parameters, including recent revisions introduced in Reference 3. The experimental bands are 1σ . The
vertical blue band comes from a preliminary estimate of h1

π , based on a lattice QCD calculation of a
three-point function (38). (b) Constraints on h pp

ρ,ω = h0
ρ,ω + h1

ρ,ω + h2
ρ/
√

6 derived from AL( �pp) (3, 39). The
ellipses represent the 68%- and 90%-CL contours.
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1. The longitudinal analyzing power in the scattering of polarized protons from an unpolarized
proton target, for which measurements were performed at 13.6 MeV at Bonn, 15 MeV at
Los Alamos National Laboratory (LANL), 45 MeV at the Paul Scherrer Institut (PSI), and
221 MeV at TRIUMF:

AL( �p p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−0.93± 0.20± 0.05)× 10−7 13.6 MeV (40)
(−1.7± 0.8)× 10−7 15 MeV (41)
(−1.57± 0.23)× 10−7 45 MeV (42−44)
(0.84± 0.34)× 10−7 221 MeV (45, 46)

. 9.

The first three experiments were done at relatively low energy, where a description in terms
of S–P amplitudes is a reasonable approximation. Thus, they constrain the partial wave
coefficients of Equation 7 in a straightforward way (3, 39):

�
1S0−3P0
0 +�

1S0−3P0
1 + 1√

6
�

1S0−3P0
2 = 419± 43. 10.

The S–P LECs � are given in units of 10−7. The TRIUMF measurement, in contrast, must
be treated in a formalism that includes higher partial waves in the weak interaction, such
as the DDH potential. As shown in Figure 1a, the resulting constraints on weak couplings
can be expressed in terms of one combination related to S–P amplitudes, using the relations
in Equation 8, and another associated with P–D amplitudes. We discuss this result in more
detail in Section 3.2, below.

2. The longitudinal analyzing power for scattering 46-MeV polarized protons on a 4He target
was measured at PSI (47, 48) to be

AL( �pα)
∣∣∣
46 MeV

= −(3.3± 0.9)× 10−7, 11.

placing the following constraint on the S–P LECs (3, 47):

�
1S0−3P0
0 + 0.89�

1S0−3P0
1 + 0.75�

3S1−1P1
0 + 0.32�

3S1−3P1
1 = 930± 253. 12.

3. The circular polarization of photons emitted in the decay of the 1.081-MeV 0−0 excited state
of 18F to the 1+0 ground state is induced by PNC mixing of the 0− state with the nearby 0+1
state at 1.042 MeV (Figure 2). Consequently, this experiment selects out isovector hadronic
PNC. Four independent experiments have yielded the limits

Pγ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−7± 20)× 10−4 Caltech/Seattle (9)
(−10± 18)× 10−4 Mainz (11)
(3± 6)× 10−4 Florence (12)
(2± 6)× 10−4 Queens (13)

. 13.

These results lead to the constraint (3, 14)

|�3S1−3P1
1 + 2.42�

1S0−3P0
1 | < 340, 14.

which implies a value of h1
π significantly below the DDH best value.

4. The γ decay angular asymmetry for the transition from the polarized 110-keV 1
2
− excited

state in 19F to the 1
2
+ ground state has been measured, testing the parity mixing of these

levels (Figure 2). The results,

Aγ =
{

(−8.5± 2.6)× 10−5 Seattle (16)
(−6.8± 1.8)× 10−5 Mainz (49, 50)

, 15.
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Figure 2
The parity doublets in 18F and 19F are indicated in red. The β+ decays from 18Ne and 19Ne connect the
negative-parity members of the parity doublets to the isotopic analogs of the positive-parity members (the
ground states of 18Ne and 19Ne). These axial-charge β+ decays can be used to calibrate the strength of the
parity nonconservation doublet mixing. Energies are in keV.

constrain isoscalar and isovector hadronic PNC (3, 16):

�
1S0−3P0
0 + 0.67�

1S0−3P0
1 + 0.43�

3S1−1P1
0 + 0.29�

3S1−3P1
1 = 661± 169. 16.

Note that this constraint is quite similar to that obtained from �p + 4He: Both systems involve
an unpaired proton. As with 18F, the nuclear mixing matrix element used in the analysis was
determined from the axial-charge β decay of 19Ne, linking the same states (up to an isospin
rotation). The details of this determination can be found in Reference 16.

Figure 1 omits other constraints either because their interpretation is uncertain or because
the measurements that have been done lack the precision needed to place meaningful constraints
on hadronic PNC. Examples of the former include the anapole moment measurement for 133Cs
(51) and the circular polarization of the 2.789-MeV γ -ray emitted in the decay of 21Ne (52, 53).
The interpretations of these experiments depend on shell model estimates of quite complicated
polarizabilities (Cs) or suppressed mixing matrix elements (21Ne), and there are reasons to believe
the associated errors could be large (3). The plot also omits hadronic PNC constraints established
in experiments on neutron spin rotation in 4He (54), on the longitudinal analyzing power for the
capture of polarized protons on deuterium (41), on the circular polarization of γ -rays produced
in the capture of unpolarized neutrons on hydrogen np → dγ (55), and on the γ -ray asymmetry
from the capture of polarized neutrons on deuterium (56). The first three experiments established
upper bounds that are not sufficiently restrictive to affect our analysis. The fourth experiment
produced a signal much larger than expected, and for that reason is widely thought to reflect an
unidentified experimental systematic.

Yet even with the restriction to four observables— �p+p , �p+4He, Pγ (18F), and Aγ (19F)—it
is clear that all five partial wave amplitudes contribute to at least one of the observables. Early
versions of Figure 1 arose because it was noted that the observables plotted depended on very
similar combinations of DDH isoscalar and isovector couplings—the combination h0

ρ+0.7h0
ω and
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effectively h1
π , with very small corrections due to h1

ρ and h1
ω. Whereas isotensor PNC contributes

to AL( �p p), it plays no role in the other observables. Because the purpose of the plot is to determine
whether there is consistency among competing experiments, it thus made sense to “freeze out” this
degree of freedom. This was done by “marginalizing” over the isotensor contribution, allowing it to
vary over the DDH reasonable range, while fitting the isoscalar coupling to the measured AL( �p p).
This procedure effectively expands the allowed pp band in Figure 1—although this expansion is
modest because DDH assigned a relatively small reasonable-range uncertainty on h2

ρ of ±20%.
We make several observations about Figure 1:

1. The figure shows a region of good overlap between the four experiments. For most of the
past 15 years, similar plots showed some tension among the experiments, but recently it
was found (3) that this tension originated largely from the use of inconsistent sets of strong
interaction couplings in past analyses. As PNC experimental observables are bilinear in the
weak and strong couplings, a fixed set of strong couplings must be used when extracting
values of the DDH weak couplings. When the inconsistencies were corrected (3), the pp
error band moved upward, increasing the region of overlap with the results from �p+4He
and 19F. This is a welcome development, indicating that patterns are beginning to emerge
from experiments.

2. Another motivation for Figure 1 was to emphasize that certain combinations of weak
couplings dominate most observables: Thus, in some LO sense, identifying patterns in
hadronic PNC may not require a five-dimensional (5D) analysis. EFT approaches provide no
guidance on such issues. In contrast, it is clear that certain DDH parameters (using their best
values as a guide) are more important than others. Unfortunately, one of those parameters
is h1

π —undercutting any confidence one might have in relying on DDH for establishing the
hierarchy of S–P couplings. This raises the question of whether some other theoretical basis
exists for considering certain of the LECs as leading, and others as less important, allowing
us to focus effort initially on establishing the values of the most important parameters.

3. Figure 1 is 2D—but the end solution is consistent with h1
π ∼ 0. Only one parameter is

needed: the isoscalar strength. Had one known that at the start, one might have made another
axis choice, using the isoscalar and isotensor directions to define a plane for displaying the
experimental results.

Recently, a way to classify the S–P LECs as either leading or subleading has emerged from large-
N c analyses. That classification appears to be consistent with the hadronic PNC phenomenology
described above, and provides a sound theoretical argument for focusing first on a particular 2D
cut through the three-dimensional (3D) isoscalar–isotensor volume. In the context of large N c , the
absence of a signal from 18F can be considered an important confirmation of an emerging pattern.

We now describe the new classification of LECs that emerges from large-N c QCD, and we
discuss how this classification influences our interpretation of existing and anticipated hadronic
PNC data.

3. THE LARGE-Nc CLASSIFICATION AND EXPERIMENTAL
IMPLICATIONS

The lovely large-N c work of References 4 and 5 motivates us to pivot in the 5D space of LECs �

to two new principal axes, one in the 2D I = 0 plane and one along the I = 2 direction,

�+0 ≡
3
4
�

3S1−1P1
0 + 1

4
�

1S0−3P0
0 ∼ N c ,

�
1S0−3P0
2 ∼ N c , 17.
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Table 2 A large-N c hadronic PNC “Rosetta stone”a,b

Coefficient DDH (8) Girlanda (22) Large Nc (5)

�+0 ≡ 3
4 �

3S1−1P1
0 + 1

4 �
1S0−3P0
0

−gρh0
ρ ( 1

2+ 5
2 χρ )− gωh0

ω( 1
2 – 1

2 χω) 2G1 + G̃1 ∼N c

�−0 ≡ 1
4 �

3S1−1P1
0 − 3

4 �
1S0−3P0
0

gωh0
ω( 3

2+χω)+ 3
2 gρh0

ρ −G1 − 2G̃1 ∼1/N c

�
1S0−3P0
1

−gρh1
ρ (2+χρ )− gωh1

ω(2+χω) G2 ∼ sin2 θw

�
3S1−3P1
1

1√
2

gπNN h1
π

(
mρ

mπ

)2+ gρ (h1
ρ −h1′

ρ )− gωh1
ω

2G6 ∼ sin2 θw

�
1S0−3P0
2

−gρh2
ρ (2+χρ ) −2

√
6G5 ∼N c

aLow-energy constants for the S–P parity nonconservation (PNC) potential of Equation 7 are organized according to the large-N c classification of
Reference 5.
bThe relationships to the DDH (8) potential and to the coefficients of Girlanda’s (22) effective field theory potential are shown. Note that a multiplicative

factor of 2mN m2
ρ must be applied to the Girlanda entries to obtain the dimensionless coefficients �, for instance, �

1S0−3P0
1 = G2 [2mN m2

ρ ].

with the remaining three orthogonal axes suppressed in the 1/N c counting:

�−0 ≡
1
4
�

3S1−1P1
0 − 3

4
�

1S0−3P0
0 ∼ 1/N c ,

�
1S0−3P0
1 ∼ sin2 θw,

�
3S1−3P1
1 ∼ sin2 θw. 18.

One can consider these three subdominant directions to be next-to-next-to-leading order (N2LO),
contributing only in relative order∼1/N 2

c : This is explicitly the case for the second isoscalar axis,
whereas for the �I = 1 amplitudes additional suppression is gained from the weak mixing angle,
sin2 θw/N c ∼ 1/12. Consequently, the large-N c classification may prove to be especially useful
in hadronic PNC, with corrections only at the ∼10% level.

Table 2 is a large-N c version of the Rosetta stone table in Reference 3. For the Girlanda
coefficients, the key relationships are G1 ∼ G̃1 ∼ N c and G1+2G̃1 ∼ 1/N c (5). The relationships to
the DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-N c expectations, one finds

{
DDH�+0
DDH�

1S0−3P0
2

}
=
{

319
151

} ⎧⎪⎨
⎪⎩

DDH�−0
DDH�

1S0−3P0
1

DDH�
3S1−3P1
1

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩
−70

21

1340

⎫⎪⎬
⎪⎭ , 19.

with the LO contributions on the left and the N2LO contributions on the right. The units are
10−7. There is a glaring discrepancy in the �

3S1−3P1
1 isovector channel, where the pion contributes.

The DDH value for �−0 is also not negligible.

3.1. Experimental Constraints on Large-Nc Low-Energy Constants

In addition to the above results, we expect to have a new constraint from NPDGamma in
hand soon. NPDGamma data taking is finished, and the statistical uncertainty of the result has
been given as approximately 13 ppb (see http://meetings.aps.org/link/BAPS.2015.APR.S6.2).
Current efforts are focused on measuring and subtracting potential systematic effects, including
an asymmetry associated with aluminum in the target window. Consequently, we express the
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anticipated asymmetry as

|Aγ | < 1.3× 10−8ε 20.

under the conservative assumption that the result will be an upper bound (it need not be so),
which we set at the statistical uncertainty, while including a parameter ε > 1 that will account for
consequences of systematic errors, including that associated with the aluminum subtraction. We
then find (3, 57; see also References 58 and 59)

|�3S1−3P1
1 | < 270ε. 21.

The numerical coefficient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive as
that from Pγ (18F), but has a different dependence on the LECs.

We now express all five results discussed above in the large-N c LEC basis, sequestering the
N2LO terms in brackets:

2
5
�+0 +

1√
6
�

1S0−3P0
2 +

[
−6

5
�−0 +�

1S0−3P0
1

]
= 419± 43 AL( �pp),

1.3�+0 +
[
−0.9�−0 + 0.89�

1S0−3P0
1 + 0.32�

3S1−3P1
1

]
= 930± 253 AL( �pα),[

|2.42�
1S0−3P0
1 +�

3S1−3P1
1 |

]
< 340 Pγ (18F),

0.92�+0 +
[
−1.03�−0 + 0.67�

1S0−3P0
1 + 0.29�

3S1−3P1
1

]
= 661± 169 Aγ (19F),[

|�3S1−3P1
1 |

]
< 270ε Aγ (�n p → dγ ). 22.

The LO approximation corresponds to ignoring the bracketed terms while solving the three
remaining equations for �+0 and �

1S0−3P0
2 . The best-value solution is �+0 = 717 and �

1S0−3P0
2 =

324, with a nearly vanishing χ2 [reflecting the almost exact overlap of the AL( �pα) and Aγ (19F)
bands]. The contour of χ2 = 1 (the fit has one degree of freedom) encloses the region shown in
Figure 3.

0 200 400 600 800 1,000
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900
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0+ Λ
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(324,717)
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1S0 − 3P0 Λ2

1S0 − 3P0

a b

Figure 3
Leading-order large-N c solutions satisfying all low-energy constraints on hadronic parity nonconservation. (a) An expanded view of
the region, interior to the ellipse, with χ2 < 1. The dot marks the best-fit point. (b) The constraints from AL( �pp) at low energies (blue
boundary), AL( �pα) (orange), and Aγ (19F) ( green), along with the combined allowed region (dashed ellipse), and AL( �pp) at 221 MeV (red ).
The experimental bands are 1σ . The low-energy constants are given in units of 10−7.
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Both of these best values are more than a factor of two larger than the DDH benchmark values
for �+0 and �

1S0−3P0
2 given in Equation 19. This indicates that there may be a second shortcoming

in Figure 1, from the perspective of large-N c QCD: Not only were the wrong isospin axes used,
but the marginalization that was done to remove the effects of �

1S0−3P0
2 from the band for AL( �pp)

likely underestimated the associated uncertainties. In the procedures leading to Figure 1, it was
assumed that the value for h2

ρ , and consequently �
1S0−3P0
2 , would be good to within the estimate

reasonable range of ±20% around the best value. But the best-fit value we found is far outside
this band. In fact, most of the allowed region for �

1S0−3P0
2 within the ellipse of Figure 3 would

also have been excluded by this band. Consequently, it is not surprising that there is a discrepancy
between the isoscalar parameter employed in Figure 1, −(h0

ρ + 0.7h0
ω), and that associated with

�+0 , −(h0
ρ + 0.2h0

ω).
It is also apparent that there is no evidence for any nonzero contribution from the three N2LO

LECs. One way to illustrate this is to solve the three equalities above, turning on only one of
the three N2LO LECs while using the central experimental values. Doing so yields for the three
choices, in turn,

(�+0 , �
1S0−3P0
2 , �−0 ) = (710, 309,−7),

(�+0 , �
1S0−3P0
2 , �

1S0−3P0
1 ) = (667, 199, 71),

(�+0 , �
1S0−3P0
2 , �

3S1−3P1
1 ) = (704, 336, 45).

In two cases, the resulting LO parameters do not move outside the χ2 = 1 ellipse of Figure 3,
showing that any sensitivity to N2LO parameters is buried under experimental noise. As the values
of the N2LO parameters are typically comparable to or less than the experimental uncertainties,
we conclude that, with current data,

�−0 ∼ �
1S0−3P0
1 ∼ �

3S1−3P1
1 ∼ 0.

Thus, we do not have the number or quality of results needed to place meaningful constraints
on parameters we expect to be approximately one-tenth the strength of the LO parameters. This
helps to put the NPDGamma effort in context: It provides a key test of the efficacy of the large-N c

formalism through a first measurement of an N2LO LEC.

3.2. The TRIUMF 221-MeV AL( �pp)

As noted above, the DDH potential is equivalent to an EFT near threshold, and thus can be
viewed as a model for extrapolating those results to higher momenta, where ranges controlled by
meson masses become important and where additional degrees of freedom connected with P–D
and other high partial wave amplitudes play a role. Conversely, we can work this process in reverse.
The two axes of the ellipse in Figure 1b correspond to two constraints, one corresponding to the
S–P component of the scattering and the second from the P–D component. The former we have
already treated in the analysis of the low-energy data on AL( �pp), but the latter is additional. From
equations 32 in Reference 3, we obtain the constraint

�+0 + 0.48�
1S0−3P0
2 + [2.03�−0 + 18.8(h1

ρ − h1
ω)
] = 1,063± 518 AL( �pp)

∣∣∣
221 MeV

. 23.

Note that a new isovector term arises, expressed in terms of DDH couplings, reflecting the fact
that P–D scattering includes new degrees of freedom. For our just-determined best values for
�+0 and �

1S0−3P0
2 , the LO contribution to the left-hand side is 873. There is no evidence for any

nonzero N2LO contribution.
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3.3. Deconstructing h1
π : A “�I = 0” Rule from Theory and Experiment

We have already noted that there is tension between the values we have found for �+0 and �
1S0−3P0
2

and the DDH best values; the large-N c LO LECs are approximately a factor of two larger than
their DDH predictions. Although uncertainties in our fit allow for values of �

1S0−3P0
2 as small as

the DDH best value, such small values come at the cost of increasing �+0 even further (Figure 3).
Thus, such an adjustment does not remove the tension.

An even larger discrepancy exists for �
3S1−3P1
1 , as one can see by comparing the large-N c

predictions of Equations 17 and 18 with that of the DDH best values of Equation 19. The DDH
best value is at least an order of magnitude larger than the naı̈ve large-N c expectation for an N2LO
parameter. This is the LEC to which one-pion exchange, and thus h1

π , contributes. The purpose
of this section is to describe the likely origin of this mismatch.

Equation 8 shows that the numerical value of DDH�
3S1−3P1
1 is dominated by the pion, as the

contribution from vector-meson terms is less than 1% of the total. This dominance comes in
part because the pion propagator at low momentum transfers generates a relative enhancement
of (m2

ρ/m2
π ) ∼ 30, which magnifies the pion contribution to the DDH�

3S1−3P1
1 LEC and enhances

this LEC relative to others. If we compare DDH�
3S1−3P1 with DDH�+0 , we find no other large,

distinguishing factors. For example, the DDH best-value effective pion coupling, gπNN h1
π/
√

32 ∼
1.08, is comparable to those appearing in isoscalar channels,−gρh0

ρ/2 ∼ 1.59 and−gωh0
ω/2 ∼ 0.80.

Thus, one is led to conclude that a small value for DDH�
3S1−3P1
1 , consistent with the large-N c

hierarchy, requires a significant reduction in the DDH best value for h1
π —by a factor of 10 or

more—to compensate for the propagator enhancement.
The anatomy of the h1

π coupling involves both the charged and neutral weak currents. An
estimate for the charged current, or Cabibbo term, can be based on SU(3) f symmetry, either
with (60–63) or without (64, 65) the use of PCAC and current algebra techniques. This contribu-
tion to the matrix element for n→ pπ− can be related to known hyperon decays (61) as follows:

n0
− = −

(
2
3

)1/2 [
2�0
− −�−−

]
tan θc ≡ gπ . 24.

Recalling that tan θc = Vus/Vud and using the Cabibbo–Kobayashi–Maskawa (CKM) fit of equa-
tion 12.27 in the CKM review of Reference 66, we find tan θc = 0.231. Using the experimental
values in table 6.3 of Reference 67, but employing the phase conventions in appendix B of
Reference 8, we find gπ = 0.376× 10−7.

This charged-current contribution can be compared with the “best value” of h1
π from Ref-

erence 8, h1
π ∼ 12gπ , the value that was used in Equation 19. The difference reflects in part

the neutral-current contribution, but also numerical factors associated with the renormalization
group (RNG) evolution of the operators of the effective Hamiltonian to the low-momentum scale
of interest. There are also SU(3) f breaking effects to consider. Before discussing these effects
explicitly, we note that the methods that yield the so-called sum rule estimate of Equation 24 can
also be used to compute n0

0, the amplitude for n → nπ0. In this case, were CP not broken, we
should find n0

0 = 0, as first noted by Barton (68). Indeed, this cancellation has been demonstrated
explicitly (8), which serves as a consistency check of the method.

Turning to the balance of the terms in the �S = 0 effective weak Hamiltonian, we find,
unfortunately, that the methods used in the charged-current sector cannot be applied because
they rely on the existence of (V − A) × (V − A) structures in the weak Hamiltonian. In this
case, the needed πNN matrix elements have been estimated using a factorization ansatz when
possible, supplemented by quark model estimates of the nonfactorizable contributions. These
inputs, along with an estimate of the leading RNG evolution effects, yield the DDH best-value
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estimate of h1
π = (0.5 + 11.5)gπ = 12gπ , where the separated factors indicate the charged- and

neutral-current contributions, respectively (8).
However, this analysis has been revisited, particularly by Dubovik & Zenkin (DZ) (34), who

extend the three-flavor analysis of DDH to include charm quarks and thus the possibility of
GIM cancellation in loop effects (69). They also evaluate nonfactorizable contributions within
the MIT bag model. Including operator mixing and RNG evolution, they find a smaller value of
h1

π ∼ 4gπ , but comparable values of h1
ρ and h1

ω (34). The possibility of � resonance contributions
has been explored by Feldman et al. (35) in the DDH framework, and they have revisited h1

π

as well, modifying the computation of the factorized contribution as well as that of the strong
enhancement associated with the charged-current contribution to find h1

π ∼ 7gπ . The updates
made by Dubovik & Zenkin (34) and Feldman et al. (35) cannot be easily combined. We regard
h1

π ∼ 1.3× 10−7 (34) as the better estimate.
The computations of h1

π we have considered thus far work within a constituent quark model
framework, so that operators with strange quarks, albeit with no net strangeness, play no role. We
consider model approaches that can address such operators as well. The possibility of a consider-
able enhancement within the context of factorization and dimensional analysis has been noted (70).
This issue has been addressed in the Skyrme model. The two-flavor Skyrme model with vector
mesons yields a small value of the order of h1

π ∼ 0.3 × 10−7 (71), and thus comparable to gπ .
A three-flavor Skyrme model, which can incorporate empirical baryon masses, magnetic mo-
ments, and hyperon decays fairly well, has been used to assess the role of four-fermion operators
with (q̄ q )(s̄ s ) flavor structure, yielding values for h1

π in the range (0.8 − 1.3) × 10−7, consider-
ably larger than the two-flavor result (72). The authors of Reference 72 stress that this result
is not a consequence of a large (scalar) strangeness component in the nucleon wave function, a
notion now in disfavor due to LQCD results (73–76), but rather of operators appearing that in-
volve strange quarks. Note, however, that the effective PNC Hamiltonian they employ at a scale of
∼1 GeV includes neither QCD renormalization nor mixing effects in evolving from the weak scale.
Such effects would presumably be muted, as noted by Dubovik & Zenkin (34), by the Glashow–
Iliopoulos–Maiani (GIM) effects that can arise when the charm quark is included and could lead
to additional cancellations. We note that a computation of the low-energy effective Hamiltonian
including LO QCD evolution with heavy quarks has been made in the θc = 0 limit (77); however,
this is not a good approximation in the �I = 1 sector, because the neutral-current contribu-
tion enters with a factor of sin2 θw/3 � 0.08. For reference, the |�S| = 1 low-energy effective
Hamiltonian, with heavy quarks, has been computed to next-to-leading order (NLO) in QCD
(78).

To conclude this section, we note that improved assessments of h1
π yield results that are consid-

erably smaller than the “best estimate” given by DDH, and are less incompatible with the picture
suggested by large N c and naı̈ve dimensional analysis. The emerging picture points to a domi-
nance of the �I = 0 hadronic PNC nucleon amplitudes relative to �I = 1 ones, resulting from
a combination of the suppression of the latter and a not-insignificant enhancement of the former,
relative to DDH best values. This is reminiscent of the dominance of the �I = 1/2 amplitude
in K → ππ decay, as was originally pointed out in Reference 17 (see also the recent work in
References 79 and 80).

4. NEXT STEPS

The above arguments show that five significant experimental constraints on hadronic PNC—
AL( �pp) near threshold and at 221 MeV, AL( �pα), Pγ (1F), and Aγ (19F)—are in excellent agreement
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with expectations arising from large-N c QCD. In particular, this approach provides two LO
parameters, �+0 and �

1S0−3P0
2 , that can be determined from the existing experiments, and appear

to account very well for all observations. Three S–P N2LO LECs, expected to be∼10% of the LO
LECs, do appear to be smaller; at least, no existing experiment requires assigning a nonzero value
to any of the nonleading LECs. Large N c thus provides a hierarchical simplification of standard
EFT approaches, breaking the five degrees of freedom into a two-plus-three pattern. As discussed
above, such a simplification has previously been attempted, but without sound motivation, leading
to descriptions that in hindsight appear flawed. In contrast, the large-N c hierarchy appears to be
sound from the vantage points of both theory and experiment, and particularly useful for hadronic
PNC because the correction terms are N2LO, not NLO. This approach provides us with a sensible
starting point for planning future research to refine our characterization of the hadronic weak
interaction, and thus to understand how this interaction is modified when embedded in strongly
interacting systems.

4.1. Testing the Leading-Order Theory

Despite the quality of the LO fit, there is not a great deal of redundancy, especially with the
constraints from AL( �pα) and Aγ (19F) being so similar. Thus, an additional independent measure-
ment that is sensitive to the LO couplings would be valuable. Furthermore, whereas the value of
AL( �pp) is known to 10%, the errors on the other two experiments exceed 25%. A new measure-
ment matching the precision of AL( �p p), but probing a different combination of �+0 and �

1S0−3P0
2 ,

could substantially shrink the allowed ellipse shown in Figure 3. A more precise determination
of the LO LECs would be important for future searches for N2LO LECs: In experiments where
these terms arise in combination with LO terms, even modest errors in LO parameters would
obscure the effects of N2LO corrections. There do appear to be opportunities to generate new,
high-quality constraints on the LO parameters.

4.1.1. Lattice QCD. In LQCD one solves strongly interacting problems by replacing the con-
tinuum problem with a discretized version, a finite grid in Euclidean space-time with periodic
boundary conditions. Although doing so precludes any direct calculation of scattering amplitudes
(81), the distortion of the energy levels in a finite volume can be related to low-energy scattering
parameters (82–84) using techniques developed by Lüscher (85, 86). Most NN scattering calcula-
tions documented in the literature were performed with nuclear sources that placed both nucleons
at the same space-time point, limiting the results to s-waves. In contrast, applications to hadronic
PNC, where p-waves are clearly essential, require the use of extended nuclear sources, placed on
the lattice in a variety of configurations that, in sum, allow one to associate lattice eigenvalues
with partial waves having good spherical symmetry. This is a nontrivial problem, given the cubic
symmetry of the lattice. The first calculation of parity-odd two-nucleon scattering using Lüscher’s
method was recently performed, demonstrating the technique (87).

Efforts are under way to apply LQCD to the problem of calculating �
1S0−3P0
2 (2). Because

this scattering amplitude carries �I = 2, there are no disconnected (quark-loop) contributions
(88). Thus, the statistical noise in this channel should be significantly lower than in �I = 0 and 1
channels, opening up the possibility of a good LQCD “measurement” near the physical pion mass.
A calculation of hadronic PNC in the �I = 2 channel is expected to be an order of magnitude
less costly than a measurement in the �I = 1 channel. Preliminary research on �I = 2 NN PNC
yielded a nonzero signal (2), and led to the identification of improved interpolating operators,
significantly reducing the contamination from nucleon excited states at early times, at least for the
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Figure 4
A modified version of Figure 3 showing the constraint provided by the addition of a future lattice QCD calculation of the �I = 2

amplitude �
1S0−3P0
2 to ±10%, centered on the central value from Figure 3. (a) An expanded view of the region, interior to the ellipse,

with χ2 < 1. The dot marks the best-fit point. (b) The constraints from AL( �pp) at low energies (blue boundary), AL( �pα) (orange), and
Aγ (19F) ( green), and the combined allowed region (dashed ellipse), in addition to leading-order large-N c solutions satisfying all low-
energy constraints on hadronic parity nonconservation. The experimental bands are 1σ . The low-energy constants are given in units of
10−7.

heavy-pion masses (mπ ∼ 700 and ∼800 MeV) that were used in these exploratory calculations.
Phenomenologically relevant calculations will likely require calculations with mπ � 300 MeV,
where valid comparisons can be made to low-energy EFTs (89–94).

The gestation period for major experiments in hadronic PNC, such as NPDGamma, can
approach a decade or more. Recent improvements in LQCD applications to NN interactions have
been rapid, and the basic tools are in place for a major attack on �

1S0−3P0
2 . Thus, LQCD might

turn out to be the fastest route to determining �
1S0−3P0
2 to the desired precision of 10%. The

impact of such a result (Figure 4) would be quite significant.
Wasem (38) performed an early, exploratory calculation of h1

π in LQCD at mπ ∼ 389 MeV.
Instead of an NN amplitude, a three-point function (95) corresponding to a nucleon-to-resonance
transition through pion absorption was calculated. The calculation did not include nonperturbative
renormalization of the bare PNC operators, a chiral extrapolation to the physical pion mass, or the
contributions from disconnected (quark-loop) diagrams. The result obtained, h1

π = (1.10± 0.51±
0.06)× 10−7, is consistent with the 18F upper bound |h1

π | � 1.3× 10−7. The recent developments
we have described for direct calculations of NN PNC amplitudes now supersede this approach.

4.1.2. New experiments constraining leading-order low-energy constants. Although one
could envision developing new experiments to complement existing measurements on AL( �pp), it
strikes us that the most conservative strategy might be to reexamine previous efforts on AL( �pα) and
Aγ (19F) to determine whether improvements are possible. Specifically, our analysis uses results
from Lang et al.’s (47) 1985 measurement of AL( �pα) = (−3.34± 0.9)×10−7, which was performed
with a 1.3-µA polarized beam from the Swiss Institute for Nuclear Research cyclotron. The beam’s
polarization was switched at the ion source every 30 ms. The experiment utilized techniques that
the group had developed in its earlier AL( �pp) experiment (42–44) to control systematics. If the
1σ error bar on this result could be reduced by a factor of ∼2.5, the desired precision of ∼10%
would be reached.
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From the error budget provided, and under the assumption that the statistical and systematic
errors were added in quadrature in forming the final result, it appears that the statistical
contribution is somewhat larger. Thus, an experiment delivering about an order of magnitude
more beam on target, combined with a reduction in the systematic error of approximately a
factor of two, could be required. The latter will be challenging: The PSI group worked very
hard to measure and correct for residual transverse components in the polarized beam, induced
by nonuniform magnetic fields in the cyclotron. This was the principal systematic. Thus, a new
experiment would need to do even better. Nevertheless, it strikes us that such an approach that
builds on past experience, with a proven technology, and with sources of systematic error well
documented could be preferable to starting an effort that lacks such a history.

The few-body theory used to relate the measurements to NN S–P amplitudes should also be
updated. Several modern techniques could be applied to this problem, including quantum Monte
Carlo (96).

Alternatively, one could consider a new attempt on Aγ (19F), one of two cases in which
axial-charge β decay is available as a nuclear matrix element calibration. An important aspect
of this experiment is the success in controlling systematic errors: An analysis (49) found that
systematic errors were negligible, contributing to the overall uncertainty at a level that would
have allowed a 10% measurement had the statistics been available. Thus, a repetition of this
experiment with a factor-of-20 increase in counting could reach the target 10% uncertainty. As
19F was produced using a relatively modest 0.4-µA 5-MeV polarized proton beam, the needed
statistics might be attainable.

4.2. Testing the Next-to-Next-to-Leading-Order Theory:
NPDGamma and Pγ (18F)

A significant outcome of our research is the recognition that (a) past experiments have done a
good job of characterizing the LO large-N c interaction—with further improvements possible in
the near term, such as that illustrated in Figure 4—and (b) we have already embarked on a credible
campaign to learn about the N2LO corrections. Concerning this second point, the striking aspect
of Equation 22 is that �

1S0−3P0
1 and �

3S1−3P1
1 are the low-hanging fruit in this endeavor, because

we can use isospin to restrict ourselves to the �I = 1 plane in our 5D parameter space, where no
LO terms exist to mask the smaller effects we seek. Furthermore, we have already embarked on a
nearly optimal program to limit or measure these parameters: Pγ (18F) and NPDGamma are ideal
choices for this task.

An important question to ask is where we might stand once NPDGamma announces its result.
To assess this question we make the choice ε ∼ 1, which is a possible outcome because the
important systematic effects in the experiment appear to be isolated in the window subtraction,
including Al as the dominant correction. Figure 5 shows the net results that would follow from
combining the bound on Pγ (18F) with an NPDGamma Aγ (�n p → dγ ) result centered on zero
with a final error bar of 1.3 × 10−8. Note that a central value for Aγ other than zero would shift
the horizontal band up or down, whereas significant residual systematic uncertainties leading to
ε > 1 would broaden the band proportionately. One observes that the two experiments are very
complementary, probing different combinations of the two �I = 1 LECs. If one uses �+0 ∼ 700
as the scale of the LO contribution, then current Pγ (18)F and potential NPDGamma constraints
are approximately a factor of three below the LO scale, or roughly at the NLO level. Thus,
considerable work remains to be done, as these constraints should be improved by another factor
of three if the LECs are of natural size.
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Figure 5
The progress in constraining the large-N c isovector next-to-next-to-leading order low-energy constants
(LECs) that will result from a combination of anticipated NPDGamma results (horizontal band ) with the
existing constraint from Pγ (18F) (oblique band ). The former assumes a central value of zero for Aγ (�n p → dγ )
and an uncertainty determined by the experiment’s statistics, and thus assumes that the current campaign to
subtract out window-induced asymmetries will yield a final systematic uncertainty well below the statistical
uncertainty. Note that both isovector LECs are bounded once the NPDGamma results are combined with
Pγ (18F), whereas neither is bounded without the former result. The LECs are in units of 10−7.

Figure 5 also shows that the NPDGamma result is essential in placing such bounds on �
1S0−3P0
1

and �
3S1−3P1
1 : Pγ (18F) by itself constrains neither to be below the LO scale. The two measurements

are highly complementary, testing distinct combinations of the �I = 1 LECs.
Next-generation experiments aiming to reach the N2LO level will be challenging, and would be

more easily motivated if the needed sensitivity to see N2LO contributions could be better defined.
If current LQCD efforts to determine �

1S0−3P0
2 at the 10% level meet with success, then the

N2LO contributions might be the next LQCD challenge. Although the presence of disconnected
diagrams would substantially increase the difficulty of �I = 1 calculations, the detection of a
signal of any quality would be helpful to the field, as they would potentially confirm the predicted
large-N c coupling hierarchy and provide a definite target for the experimentalists.

4.3. The Potential Impact of New Experiments

Several recent proposals have been made to initiate new experiments, and others have been pursued
or discussed in the past. The large-N c LEC hierarchy can be used to determine how new exper-
iments will affect our understanding of hadronic PNC. We first describe some of the potential
observables:

1. An effort to measure the longitudinal asymmetry for scattering polarized neutrons from a
3He target—�n + 3He → 3H + p—is under way at the SNS. The predicted value, based
on calculations by Viviani et al. (97) using the AV18 potential with the UIX three-body
interaction, is

364
10−8

Ap = −�+0 + 0.227�
1S0−3P0
2 −

[
3.82�−0 + 8.18�

1S0−3P0
1 + 2.27�

3S1−3P1
1

]
. 25.
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Using the best-fit parameters for the two LO LECs yields Ap ∼ −1.8×10−8. As the relative
sign of the two LO LECs is opposite to that found for AL( �pp), a measurement would generate
a complementary band in Figure 3, testing the region of intersection identified there.

2. There was a past attempt to detect the γ -ray asymmetry produced when longitudinally po-
larized neutrons capture on a deuterium target, �n+ d → t+γ . Aγ (�nd ) is a rare example of a
few-nucleon PNC observable where some enhancement occurs, as the parity-conserving
M1 amplitude is suppressed at thermal neutron energies. The predicted asymmetry is
(98)

118
10−7

Aγ = �+0 + 0.44�
1S0−3P0
2 −

[
1.86�−0 + 0.65�

1S0−3P0
1 + 0.42�

3S1−3P1
1

]
, 26.

yielding∼7.3×10−7 for the LO best values. The value obtained in an experiment by Avenier
et al. (56), ∼8× 10−6, is an order of magnitude larger. This result has been largely ignored
because of concerns about unidentified systematics (17).

3. There are several np observables complementary to NPDGamma’s Aγ (�n p). Significant
effort has been invested in studies of the circular polarization of the 2.2-MeV γ -ray produced
in thermal neutron capture on the proton. The circular polarization (57),

825
10−7

Pγ = �+0 + 1.27�
1S0−3P0
2 + [0.47�−0

]
, 27.

is ∼1.4 × 10−7 for the LO LEC best values. The combination of three separate mea-
surements and various control experiments by Knyaz’kov et al. (55) led to a determina-
tion of Pγ = (1.8± 1.8) × 10−7, superseding an earlier result that apparently was con-
taminated by bremsstrahlung from the reactor core (99). Recently, interest has been ex-
pressed in measuring the inverse reaction, the circular polarization dependence of the
breakup reaction �γ d → n + p , which of course has an identical dependence on the
LECs. This has been proposed as a commissioning experiment at an upgraded HIγ S facility
(100).

4. The neutron spin rotation of polarized cold neutrons traversing a parahydrogen target is a
third possible np observable. The experiment is feasible because strong interaction spin-flip
scattering off parahydrogen (S = 0 molecules) is forbidden. The spin rotation, taken from
the Paris potential results of Reference 101 as modified by References 102 and 103 (see also
References 58, 104, and 105),

180
10−7

dφn

dz

∣∣∣∣
parahydrogen

=
(
�+0 + 2.82�

1S0−3P0
2 −

[
3.15�−0 + 1.94�

3S1−3P1
1

])
rad m−1, 28.

is ∼9.1 × 10−7 rad m−1 for the best-value LO LECs. To date, no experiment has been
mounted. This is also the case with a fourth possible np observable, the dependence of the
capture cross section on the neutron helicity, which tests a combination of LECs identical
to that appearing above. Note that the neutron spin rotation in deuterium has also been
calculated (106).

5. A neutron spin rotation experiment has been attempted in 4He (107), where

105
10−7

dφn

dz

∣∣∣∣
4He
=
(
�+0 −

[
1.61�−0 + 0.92�

1S0−3P0
1 + 0.35�

3S1−3P1
1

])
rad m−1, 29.

leading to a predicted LO spin rotation of 6.8× 10−7 rad m−1. The experiment, performed
on the slow neutron beam line at NIST, established an upper bound of (1.7± 9.1± 1.4)×
10−7 rad m−1 (54).
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Table 3 Candidate future hadronic parity nonconservation experiments, including several that have been or are now being
pursueda

Observable Experimental status LO expectation LO LEC dependence

Ap (�n +3 He→ 3H+p) Ongoing −1.8× 10−8 −�+0 + 0.227�
1S0−3P0
2

Aγ (�n + d → t + γ ) 8× 10−6 (56) 7.3× 10−7
�+0 + 0.44�

1S0−3P0
2

Pγ (n + p → d + γ ) (1.8± 1.8)× 10−7 (55) 1.4× 10−7
�+0 + 1.27�

1S0−3P0
2

dφn

dz

∣∣∣
parahydrogen

None 9.4× 10−7 rad m−1
�+0 + 2.7�

1S0−3P0
2

dφn

dz

∣∣∣
4He

(1.7± 9.1± 1.4)× 10−7 (54) 6.8× 10−7 rad m−1 �+0

AL( �p + d ) (−3.5± 8.5)× 10−8 (41) −4.6× 10−8 −�+0

aThe leading-order (LO) large-N c estimates for the observables are given, along with the functional dependence on the low-energy constants (LECs).

6. The longitudinal analyzing power for the scattering of polarized protons on deuterium,
where (108)

156
10−8

AL = −�+0 +
[
1.75�−0 − 1.09�

1S0−3P0
1 − 1.25�

3S1−3P1
1

]
, 30.

leads to an LO large-N c estimate of AL = −4.6 × 10−8. An experiment was performed at
15 MeV nearly 40 years ago, yielding the result AL = (−3.5± 8.5)× 10−8 (41).

A summary of this discussion is presented in Table 3. All of the above experiments belong in
the same class as those displayed in Figure 3, presumably dominated by the LO LECs. Thus, it
would be appropriate to set goals, for future efforts on these observables, that will guarantee they
improve the pattern in that figure. To be competitive, uncertainties should then be achieved that
are at least comparable to those of the AL( �pα) and Aγ (19F) measurements, which, as noted above,
are ∼25%. The last two experiments in the table are sensitive only to �+0 , and thus can be viewed
as surrogates for AL( �pα) and Aγ (19F). As we have argued that it is important to reduce the errors
on these measurements to∼10%, better defining the two LO LECs, one might consider whether
that goal could be reached more easily via AL( �pd ) or neutron spin rotation in 4He.

Four of the experiments depend on linear combinations of �+0 and �
1S0−3P0
2 , and in three

cases these combinations are not too different from that tested in AL( �pp). Consequently, not
much will be learned unless an ∼10% uncertainty comparable to that of AL( �pp) is achieved.
The observable Ap(�n+ 3He →3H+ p), which is the subject of an ongoing experiment (see
http://online.kitp.ucsb.edu/online/nuclear-c16/), is notable because the contributions from
�+0 and �

1S0−3P0
2 carry opposite signs. A high-quality result would place a fifth band on

Figure 3, oblique to those now there. That would be very helpful in testing the large-N c picture.
An uncertainty on Ap (�n+ 3He→ 3H+ p) of �1× 10−8 would have a major impact on Figure 3.

All of these remarks are made under the assumption that N2LO corrections are indeed of
the naı̈vely expected size, ∼10%. If this assumption is wrong, then the question of the role
of candidate new experiments becomes more complicated. We also remark that none of the
experiments in Table 3 is like 18F and NPDGamma, which are exclusively sensitive to N2LO
corrections. This underscores the importance of these two experiments, providing a unique
opportunity to establish the scales of two of the three N2LO LECs cleanly and, thus, to verify
the predicted large-N c LEC hierarchy.
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5. SUMMARY AND OUTLOOK

The field of hadronic PNC began threescore years ago, when it was recognized that the weak
semileptonic interaction responsible for nuclear β decay violates parity and that there should exist
a corresponding parity-violating signal in the NN interaction due to the nonleptonic weak force.
By exploiting parity violation, it was realized that one could isolate this interaction despite its
embedding in a strongly interacting system, testing our understanding of W and Z boson exchange
among the quarks. NN and nuclear systems were recognized as uniquely important to the study of
the neutral current, which plays no role in strangeness-changing interactions due to the absence of
flavor-changing neutral currents. For many years it has been anticipated that the neutral current
would be revealed in a PNC �I = 1 interaction of long range, generated by pion exchange. The
expectation that this interaction would have important consequences for PNC observables has
influenced PNC analyses since the 1980s. Yet, the combination of experimental data, large-N c

arguments, and subsequent reexaminations of QCD effects influencing the size of h1
π indicates

otherwise.
Experimental progress in this field has been slow due to the difficulty of measuring ef-

fects with a natural size of order (Gm2
π ) ∼ 10−7 relative to the strong interaction: Despite the

distinctive character of PNC observables, there are many systematics that can lead to false
signals at this level. On the theoretical side, one had the challenge of five independent S–P
Danilov amplitudes, and very few measurements to constrain these amplitudes. There was a
need to find some organizing principle to simplify this task. Influenced by meson-exchange
models of PNC, the interest in the �I = 1 interaction, and the absence of �I = 2 con-
tributions to the data displayed in Figure 3 [apart from AL( �pp)], the choice was made to fo-
cus on average �I = 0 and 1 strengths, reducing the S–P interaction to two effective cou-
plings. Compounded by some inconsistent treatments of couplings, resolved only recently (3),
this led to a puzzling pattern, including the conclusion that the �I = 1 degree of freedom was
unneeded.

Meson-exchange models such as the DDH potential attempt to predict weak couplings, a
daunting task given the uncertainties inherent in embedding weak interactions in a strongly in-
teracting environment. Beginning about 10 years ago, pionless EFTs began to be employed. As
noted in this review, this approach is closely related to the Danilov amplitudes and to the contact
potential of Desplanques & Missimer (37), which date to the field’s early days. Furthermore, the
DDH potential is operationally identical to pionless EFT, in the S–P limit. Thus, one could ar-
gue that there is little new in the EFT approach. By contrast, EFT forces one to again confront
the issue of five independent S–P amplitudes: There is no organizational principle in EFT for
reducing the number of LECs to a more manageable number. The LECs appear as equivalent
constants that must be determined from experiment.

This is why the recent application of large N c to the PNC is such an important step forward: It
provides a hierarchical division of the LECs into two groups, two LO LECs with �I = 0 and �I =
2, and three N2LO LECs that naı̈vely are ∼10% corrections, two of which carry �I = 1 and one
�I = 0. The purpose of this review has been to apply this formalism to the full body of information
available on PNC. The LO LECs—�+0 and �

1S0−3P0
2 —can be reasonably well determined from

existing PNC results, and the resulting LO large-N c effective theory accounts for all of the existing
measurements. We have also argued that the remaining three constants—�

1S0−3P0
1 , �

3S1−3P1
1 , and

�−0 —do indeed contribute at a suppressed level. More precisely, if NPDGamma produces a result
close to its announced statistical precision, it can be combined with Pγ (18F) to constrain �

1S0−3P0
1

and �
3S1−3P1
1 to values considerably below that of �+0 .
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In retrospect, the field has been very fortunate in its choice of experiments. AL( �p p), AL( �pα),
and Aγ (19F) have allowed us to extract the large-N c LO LECs. Pγ (18F) and Aγ (�n p → dγ ) probe
the N2LO �I = 1 plane in complementary ways, potentially allowing us to demonstrate the LEC
hierarchy suggested by large N c by constraining two of the subdominant LECs.

It strikes us that, after many years during which the theoretical and experimental situations
were less clear, we are beginning to understand the pattern of PNC in NN systems. There are
opportunities to make further progress—to pick experiments that optimally constrain the LECs
and test the patterns predicted by large N c . These include the following:

1. An LQCD evaluation of the couplings, beginning with a measurement of the �I = 2 param-
eter �

1S0−3P0
2 . A measurement accurate to 10% would significantly narrow the uncertainties

on �+0 and �
1S0−3P0
2 . This calculation is the natural first step for LQCD, as the �I = 2

amplitude has no contributions from disconnected (quark -loop) diagrams.
2. An improved determination of the LO parameters �+0 and �

1S0−3P0
2 by a modern and higher-

precision measurement of the �pα longitudinal analyzing power and/or the 19F photon decay
asymmetry.

3. Alternatively, an improved determination of the LO parameters �+0 and �
1S0−3P0
2 by one of

the new experiments listed in Table 3. We have noted that AL(�n + 3He → 3H + p), an
experiment that is running now at the SNS, is a particularly good choice.

4. A test of the N2LO parameters �
1S0−3P0
1 , �

3S1−3P1
1 , and �−0 by a modern and higher-precision

18F circular polarization measurement and/or a second-generation �n p → dγ experiment
that limits statistical and systematic errors to �0.5× 10−8.

Undertaking all or some combination of these efforts could confirm the large-N c picture
outlined herein and provide accurate values for four of its five LECs. This in turn could finally
demonstrate that the six-decade-long program to understand hadronic PNC has been successful.
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