
ePass Policy and List of Required Documents

JLab Hypernuclear Collaboration Meeting May 16th, 2025 William Henry

Trainings

View your training status

Jefferson Lab

Please see the list below of frequently re Please visit the <mark>web based t</mark>		
Course	Skill Code	Term Expiration
Annual Security Awareness	GEN034	Annually (January)
ES&H Orientation	SAF100	3 years (36 months) from date taken
Cyber Security Awareness	CST001	Annually
Working Safely at Jefferson Lab During Elevated		
MedCon Levels	SAF003	Currently Required
Physics Division Work Governance	SAF116kd	Annually (January)
Oxygen Deficiency Hazard	SAF103	2 years (24 months) from date taken
RadWorker 1 Classroom	SAF801C	Current unless expires for 2+ years
RadWorker 1 Test		
Schedule with Radcon or walk-in at ULO in CC (see onsite schedule)	SAF801T	2 years (24 months) from date taken
RadWorker 1 Practical (Schedule with Radcon)	SAF801P	Current unless expires for 2+ years
Hall A Safety	SAF110	B. Michaels
Hall B Safety	SAF111	E. Pasyuk and D. Insley
Hall C Safety	SAF112	J. Beaufait
Hall D Safety	SAF113	M. Dalton
General Access RWP	SAF801kd	Annually (December)

Trainings required to get you to Hall C

GEN034: Annual Security Awareness SAF100: ESH Orientation CST001: Cyber Security Awareness SAF116kd Physics Division Work Governance SAF103 Oxygen Dificiency Hazard SAF800: GERT SAF801C: Rad Worker 1 SAF801C: Rad Worker 1 SAF801T: Rad Worker Test SAF801P: Rad Worker Practical SAF112: Hall C Safety SAF801kd: General Access RWP

https://www.jlab.org/physics/user-liaison

Electrical Trainings

Table 1. How to determine the training requirements for electrical safety and lock out / tagout

If th	If the answer to questions below is yes, you are required to successfully complete the course(s) to the right of the question.				
		Title	Code		
1.	energy (e.g., compressed gasses, hydraulic or pneumatic,	Lockout/Tagout (LOTO)	ESC007		
		Safety Practical Application	ESC008		

2.	Does the person in this position operate electrical equipment other than using a light switch, for example, turning appliances or common office equipment on or off?	Basic Electrical Safety	ESC001
3.	Is the person a TJNAF employee, subcontractor, or user	Basic Electrical Safety	ESC001
5.	who performs all modes of work on Class 1 electrical or	LOTO	ESC007*
	electronics equipment?	Safety Practical Application	ESC008*
4.	Is the person in this position responsible for energizing	Basic Electrical Safety	ESC001
	and de-energizing electrical equipment at the source of electrical power (such as operation of circuit breaker, knife switch, etc.)?	Arc Flash & PPE	ESC002
		Safe Switching of Electrical Equipment	ESC005
		Electrical Contact Release	ESC006
		LOTO	ESC007
		Electrical Safety Practical Application	ESC008
5.	Is the person a TJNAF employee, subcontractor, or user	Basic Electrical Safety	ESC001
5.	who performs work on Class 2 or higher electrical or	Arc Flash & PPE	ESC002
	electronics equipment?	Electrical Work Site Safety	ESC003**
		Work Planning & Documentation	ESC004**
		Safe Switching of Electrical Equipment	ESC005
		Electrical Contact Release	ESC006
		LOTO	ESC007
		Electrical Safety Practical Application	ESC008
		Capacitor Safety	SAF603B.KD

* If you are required perform hazardous energy control or administrative/configuration control, the LOTO Competency (ESC007 & ESC008) is required to be current.

** ESC003 & ESC004 are still included in the QEW competency and are being removed from LMS due to the implementation of ePAS. Credit will be given upon request to maintain competency.

Non-NRTL Equipment

NRTL: Nationally Recognized Testing Laboratory

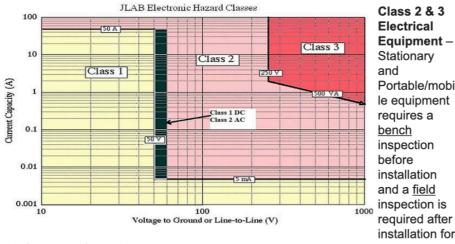
If your equipment does not have one of the above, it must be inspected and registered with electrical safety.

Non-NRTL Equipment

NRTL: Nationally Recognized Testing Laboratory

Non-NRTL Inspection Guidelines

Objective


To ensure that all new and legacy electrical and electronic <u>Non-NRTL</u> equipment is compliant with DOE standards.

Inspection Process

Engineers/Technicians are to submit the following applicable information for electrical and electronic equipment inspections through the <u>Non-NRTL</u> database <u>https://misportal.jlab.org/equipment/registrations</u>

- Schematics
- Build of Materials (BOM)
- Location
- Operational Safety Procedures (OSP)
- Any other requested documentation

Class 1 Electrical Equipment - requires a field inspection after installation.

stationary equipment.

After the equipment is approved, the electrical inspector will place a QR code label on the component, a green QR code for class 1 electrical/electronic

Page 1 of 2

equipment and a blue QR code for class 2 & 3 electrical/electronic equipment. The QR code information is based on information in the <u>Non-NRTL</u> database.

will be given to class 1 Non-NRTL Equipment will be given to class 2 & 3 Non-NRTL Equipment

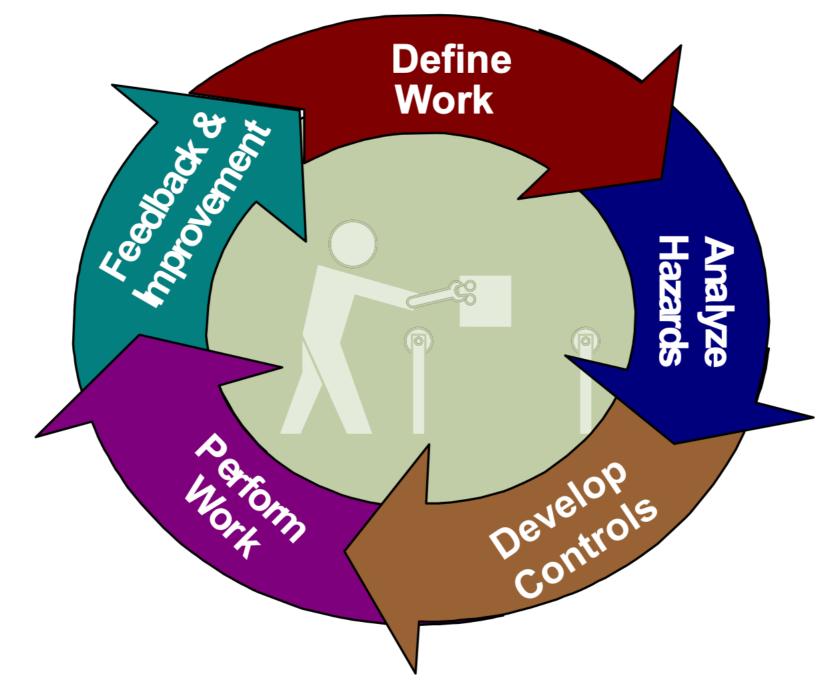
Note

New equipment- classified as any electrical or electronic equipment that is newly designed, fabricated or modified except for the replacement of like-for-like parts in or after 2021.

Legacy equipment -classified as any electrical or electronic equipment designed, fabricated or modified in or prior to 2020.

Multiple units- multiple <u>unit</u> of equipment that are precisely the same, may have 1 set of documents upload for all pieces. All units must be entered separately specifying the unit's individual location.

Courtesy Inspections: Device Owners may request a courtesy inspection to verify the equipment is within the regulation standard.


References:

https://www.jlab.org/ehs/ehsmanual/6220.htm

Page 2 of 2

Integrated Safety Management Awareness Training

EPAS

1. Why ePAS?

a. Short Answer

ePAS provides a single portal for uniform hazard identification and control across the lab ePAS provides for work review, release, and authorization by line-management ePAS facilitates the pre-job briefing process

b. Long Answer

In 2019, Jefferson Lab experienced three notable hazardous energy events that resulted in an overhaul of the way the lab recognizes and addresses protective measures. The events pointed to an informal and sometimes inaccurate approach to identifying hazards and controls. This caused an erosion of safety margins and an increase in incidents at the lab. After a thorough investigation by the lab, by an independent review committee empaneled by JSA, and by the Department of Energy's Office of Enforcement, the lab was required that the lab put in place a plan to ensure such notable events do not recur. After a measured evaluation, the lab decided to purchase the program ePAS (Electronic Permit Administration System), that improves, simplifies and centralizes lab processes. We are rolling it out...

External review/oversight groups have been following the Lab's progress on ePAS implementation:

"Roll out of ePAS is critical to establishing a common risk/safety framework and needs to become a common management expectation through the supervisor level". (3/23 JSA Operations and Safety Committee), "Accelerating ePAS adoption is critical to advancing integrated risk assessment and mitigation" (Ops and Safety Committee FY 22 Assurance Review), and Ops& Safety Committee FY23 Assurance Agenda: "Continued progress on ePAS system for hazard assessment and work planning deployment".

EPAS

Permit to Work

		RE-PR	INT		
Jefferso	n Lab				JLab-PTW-7111 PERMIT TO WORK
PERMIT DETAILS					
Permit Request No:	JLab-PF	२-7111	Permit Prepare	d By: Williar	m Henry
Work Group:	HALLC		Issue Date:	04/30/	/2025 14:13
Area:	Bldg 23	- Experimental Staging	Expected Expir	y Date: 09/ 1/2	2027 16:00
Task Number:			Organisation:	PHAL	LC
Project Title:			Outage:		
Account Code:					
Has Simple LOTOs:	No				
Notes:					
Special Requirements	s:				
PLANT & WORK					
Title:	Hypernu	uclear Drift Chamber Com	missioning		
Primary Plant Item:		PERIMENTAL STAGING			
Work Scope					
Tools & Equipment:	include	, preparation, and testing e, repairing broken wires, l ata Acquistion (DAQ). Op linder.	HV test, powering detecto	r, cosmic testing,	, and connecting
Equipment Number	Descript	ion			
23	23 - EXP	ERIMENTAL STAGING			
CONTROL CERTIFIC					
Certificate#	Description			State	Issue Date
ATTACHED DOCUME	NTS				
Name		Dor	с Туре	Attached	Date
APPROVALS					
		specified on this permit an ed the work as specified o			ences attached)
PTW Issuer	Sign	David	Gaskell	Date:	04/29/2025 12:32
This Permit	applies only for	r the occasion specified. No P	person may leave the site oossession.	with this JLab-PT	W-7111 in his or her

Jefferson Lab

Task Hazard Analysis

		RE-PRINT			
					Task Hazard Analysis Checklist
Ĵ	efferso				PERMIT No: JLab-PTW-7111
Sum	nmary				
lite:	Jefferson L	abs	Responsibility Group:	Physics Issue Date/Time:	
Area:	•	xperimental Staging			
ïtle:	Hypernucle	ar Drift Chamber Commissioning			
Work	Scope				
Job D	escription:	Hypernuclear Drift Chamber	Commissioning.	Define Work	
				ernuclear collaboration. Tasks include, repairing broken wires, HV	
Tools	& Equipment:	cosmic testing, and connecti	ing to a Data Acquistion (DAQ).	Operation includes a supply of Argon/CO2 from a pressurized gas	cylinder.
	ional Location	Description			
23		23 - EXPERIMENTAL STAGING			
	Details				
tem Io	Task Description	Work Categories	Hazards Identified	Control Measures	
1	Repair and r	naintenance of drift wire chambe			
1.1		Moveable Apparatus - Hall Equipment	Moveable - Pinch Points		
1.2		Moveable Apparatus - Hall Equipment	Moveable Apparatus - Electrical	Administrative A qualified electrical worker is required for resetting panel breactions 	kers
1.3		Moveable Apparatus - Hall Equipment	Moveable Apparatus - Impact to Personnel	Administrative • Prior to movement of moveable apparatus, warn people workin spotters, if required • Flashing lights will be visible, and horns will sound when spect	
1.4		Machine Tool - Other	Over exertion due to manual material handling	Engineering • Utilize material lifts / mechanical assist devices to move mater	ials
1.5		Machine Tool - Other	Slips, trips, falls - Machine Tools	Administrative • Ensure that the area is cleaned after completing work • Ensure that the work area is orderly and that there are no tools fall or roll	s or parts that could be dislodged and
iday, M	ay 16, 2025 13:26		F	Printed by: William Henry (7431)	Page 1 of 7
			Analyze		
			Hazards	Develop	
			nazarus	Controls	

EPAS

Ô

Before starting work, a prejob brief must be completed. And Documented

Pre-Job Brief Checklist

The location of the Pre-Job Brief should be as close to the work location as possible to make evident the configuration of the space, the conditions in which the work is to take place, and any co-location of work.

The Pre-Job Brief should provide employees with expectations and guidance relative to the job task assigned.

Scope of Work

- □ Project or Task Deliverables
- Project or Task Timeline
- $\hfill\square$ Completion Expectations

Hazard Identification

- □ Pre-job hazard assessment
- □ Ask questions to determine if all hazards have been identified
- $\hfill\square$ Verify identified hazards are captured in the work control documents

Procedures, Protocols and Controls

- \Box Confirm the the Permit to Work is approved
- \Box Review applicable procedures, protocols, or controls
- \Box Verify all team members understand procedures
- \Box Review applicable work controls documents and permits
- $\hfill\square$ Review emergency response plans, stop work and back out procedures

Role Clarification

- □ Tasks clearly assigned to each team member with defined roles and responsibilities
- \Box Each team member knows where their role fits in within the team and task
- $\hfill\square$ Team leader provides opportunity for feedback and open discussion
- Discuss how information should be communicated and who to contact in case of emergencies
- $\hfill\square$ Emphasize individual responsibility for safety and adherence to safety protocols

Training and Competency

- □ Ensure all team members have completed necessary safety training
- □ Verify that team members have the skills and competencies required for their roles
 - \Box Check that all necessary certifications are up to date.

Record Keeping

□ Document the pre-job brief

Project:		Location:		
Name:		Date:		
Deferre a 2240 Annualiz T2. Let Deisform				

Reference 3240 Appendix T3: Job Briefings

EPAS: To-do

		Commissioning	Installation	Running	Repairs Maintenence
HKS			Hall Techs and Engineers	Procedure!!	
	Magnets				
	TOF				
	Drift Chambers	Complete			
	Water Cerenkov				
	Aerogel Cerenkov				
HKS					
	Magnets				
	TOF				
	Drift Chambers	Complete			
ENGE					
	Magnets				
	TOF				
	Drift Chambers	Complete			
	SciFi				
	Alpha Source				

EPAS will be required for commissioning, installation, running and repairs for all subsystems

Safety Docs

Available on Hall C Webpage and Github

Run Information - Jan 2025 - Aug 2025

- LAD Shift Sign-up (Read-only Shift Schedule)
- R-SIDIS Shift Sign-up (Read-only Shift Schedule)
- Hall C Electronic Logbook
- Run Safety Documents
 - Conduct of Operations
 - Experiment Safety Assessment
 Document
 - Radiation Safety Assessment Document
 - SAF112 Training/Emergency Response Guidelines
- Shift Worker Information and Howtos
- Accelerator Status
- Hall C Live Status

https://www.jlab.org/physics/hall-c

\mathbf{O}	Product V Solutions V Resources V Open	n Source 🗸 Enterprise 🗸 Pricing	Q Search or jump to
		·	
⊒ Jeff	fersonLab/hallc-osp		
<> Cod	de 📀 Issues 🕅 Pull requests 🕟 Actions	🗄 Projects 😲 Security 🗠 Insights	
	🐉 master 👻 🐉 20 Branches 🛇 5 Tags	Q Go to file	<> Code -
	WmHenryTemple Merge pull request #14 from \	WmHenryTemple/LAD 4e508cd · 2 days	ago 🕚 209 Commits
	🖿 run	Roughly move into Hall A style dir structure and add build	s 10 years ago
	scripts	Fix \GITINFO branch issue with underscores	6 years ago
	src	LAD update	2 days ago
	.gitignore	Add vim temp files to .gitignore	9 years ago
	latex2html-init	Initial commit of legacy Hall C Operations Manual	11 years ago
	README.md	Updated README.md	2 years ago
	TODO	Start a TODO	9 years ago
	C_operman.tex	Create blank controls and analysis sections	10 years ago
	🗋 doit	Add the generic portion of the ESAD and turn on ESAD cre	10 years ago

https://github.com/JeffersonLab/hallc-osp

COO: Conduct of Operations

Conduct of Operations for Hall C E12-11-107, E12-06-104, E12-24-001 January 15, 2025

Contents

1	Preface	3
2	Documentation	3
3	On-Site Shift Personnel Training	4
	3.1 General Training Requirements	4
	3.2 Additional Training	4
	3.2.1 Ladder Safety	5
	3.2.2 Lead Safety	5
	3.2.3 Electrical & Mechanical Safety training requirements	5
	3.3 High school & Undergraduate Students	6
4	Off-Site Shift Personnel Training	6
5	Organization and Administration	6
	5.1 Spokespersons	6
	5.2 Run Coordinator	8
	5.3 Physics Division Liaison	9
	5.4 Hall Work Coordinator	10
	5.5 Shift Leader	10
	5.6 Shift Member	11
	5.7 Accelerator Operations Hall Liaison	12
	5.8 Accelerator Physicist Liaison	12
	5.9 Engineering Liaison	12

6	Ope	rating Procedures	12
	6.1	Shift Routines	12
		6.1.1 Operating Shifts	13
		6.1.2 Standby Shifts	13
		6.1.3 Operations Turnover	13
		6.1.4 Timely Orders to Operators	13
		6.1.5 Operator Aid Postings	14
	6.2	Hall Access	14
	6.3	Collaboration Request for Laboratory Resources	15
	6.4	Scheduling of Work by Outside Groups	15
	6.5	Control of Equipment and System Status	16
	6.6	Equipment Labeling	16
	6.7	Independent Verification	16
	6.8	Logkeeping	16

A Special Procedures for Hall C	18
B Special Procedures for E12-11-107, E12-06-104, E12-24-001	19
C Signature Sheets	20

https://github.com/JeffersonLab/hallc-osp

COO: Conduct of Operations

Special Procedures examples:

Powering down magnets for hall access

Working near Enge and vacuum windows

New hazards in hall (SAF112)

Staffing when beam not available

6	Ope	erating Procedures	12
	6.1	Shift Routines	12
		6.1.1 Operating Shifts	13
		6.1.2 Standby Shifts	13
		6.1.3 Operations Turnover	13
		6.1.4 Timely Orders to Operators	13
		6.1.5 Operator Aid Postings	14
	6.2	Hall Access	14
	6.3	Collaboration Request for Laboratory Resources	15
	6.4	Scheduling of Work by Outside Groups	15
	6.5	Control of Equipment and System Status	16
	6.6	Equipment Labeling	16
	6.7	Independent Verification	16
	6.8	Logkeeping	16

A Special Procedures for Hall C	18
B Special Procedures for E12-11-107, E12-06-104, E12-24-001	19
C Signature Sheets	20

ESAD

Experiment Safety Assessment Document (ESAD)

for

Experimental Hall C Base Equipment

Contents

1	Intr	oduction	3
2	Ger	neral Hazards	4
	2.1	Radiation	4
	2.2	Fire	4
	2.3	Electrical Systems	5
	2.4	Mechanical Systems	5
	2.5	Strong Magnetic Fields	5
	2.6	Cryogenic Fluids and Oxygen Deficiency Hazard	5
	2.7	Vacuum and Pressure Vessels	6
	2.8	Hazardous Materials	6
	2.9	Lasers	6
3		l Specific Equipment	8
	3.1	Overview	8
	3.2	Checking Tie-in To Machine Fast Shutdown System	8
	3.3	Beamline	8
		3.3.1 Hazards	9
		3.3.2 Mitigations	9
		3.3.3 Responsible Personnel	10
	3.4	Raster Systems	10
		3.4.1 Hazards	11
		3.4.2 Mitigations	11
		3.4.3 Responsible Personnel	11
	3.5	Møller Polarimeter	11
		3.5.1 Hazards	12
		3.5.2 Mitigations	12
		3.5.3 Responsible Personnel	12
	3.6	Cryogenic Target System	13
		3.6.1 Hazards	13
		3.6.2 Mitigations	14
		3.6.3 Responsible Personnel	16
	3.7	Hall C Spectrometers	16

CONTENTS

 $\mathbf{2}$

29

	3.7.1	Hazards	16
	3.7.2	Mitigations	17
	3.7.3	Responsible Personnel	18
3.8	SHMS	Fringe Fields and Small Spectrometer Angles	18
3.9	Spectr	ometer Carriage and Rotation Systems	19
	3.9.1	Hazards	19
	3.9.2	Mitigations	20
	3.9.3	Responsible Personnel	20
3.10	Detect	or High Voltage	20
	3.10.1	Hazards	21
		Mitigations	21
	3.10.3	Responsible Personnel	21
		3.10.3.1 High Voltage System Checkout	22
3.11	Detect	or Gas Supply System	22
	3.11.1	Hazards	22
	3.11.2	Mitigations	22
	3.11.3	Responsible Personnel	23
3.12	Drift (Thambers	23
	3.12.1	Hazards	23
	3.12.2	Mitigations	24
	3.12.3	Responsible Personnel	24
3.13	Gas Cl	herenkov Detectors	24
	3.13.1	Hazards	25
	3.13.2	Mitigations	25
	3.13.3	Responsible Personnel	25
3.14	SHMS	Spectrometer Rotation	25
			26
4.1		ew	26
4.2		Detectors	26
	4.2.1	Hazards	26
	4.2.2	Mitigations	27
4.3	-	nsible Personnel	27
4.4	Large .	Angle Detector	27
		4.4.0.1 Electrical Hazard	28
		4.4.0.2 Fall Hazard	28
		4.4.0.3 Laser Hazard	28
	4.4.1	Mitigations	28
		4.4.1.1 Electrical Hazard Mitigations	29

ESAD

Experiment Safety Assessment Document (ESAD) for Experimental Hall C Base Equipment

- ESAD needs to identify all hazards and controls for each subsytem
- Should be straightforward to copy/paste hazards and controls from commissioning EPAS's

CONTENTS

 2

	3.7.1	Hazards	6
	3.7.2		7
	3.7.3		8
3.8	SHMS		8
3.9		6 1 0	9
	3.9.1		9
	3.9.2		20
	3.9.3	8	20
3 10	0.0.0		20
0.10			21
			21
			21
	5.10.5		22
0.11	D		
3.11			22
			22
			22
	3.11.3	Responsible Personnel	23
3.12	Drift (Chambers	23
	3.12.1	Hazards	23
	3.12.2	Mitigations	24
	3.12.3	Responsible Personnel	24
3.13			24
			25
	3.13.2	Mitigations	25
			25
3.14			25
5.11	211.10		

Exp	eriment Specific Equipment	26
4.1	Overview	26
4.2	GEM Detectors	26
	4.2.1 Hazards	26
	4.2.2 Mitigations	27
4.3	Responsible Personnel	27
4.4	Large Angle Detector	27
	4.4.0.1 Electrical Hazard	28
	4.4.0.2 Fall Hazard	28
	4.4.0.3 Laser Hazard	28
	4.4.1 Mitigations	28
	4.4.1.1 Electrical Hazard Mitigations	29
	4.4.1.2 Fall Hazard Mitigations	29
	4.4.1.3 Laser Hazard Mitigations	29
	4.4.2 Responsible Personnel	29
4.5	Responsible Personnel	29

RSAD: Radiological Safety Analysis Document

Contents

1	DESCRIPTION
2	SUMMARY and CONCLUSIONS
3	CALCULATIONS of RADIATION DOSE at the SITE BOUNDARY
4	RADIATION HAZARDS
4	
	4.1 Beam in the Hall
	4.2 Activation of Target, Beamline Components and Other Materials in the Hall
	4.3 Other Sources
5	INCREMENTAL SHIELDING or OTHER MEASURES to REDUCE RADIATION HAZARDS
6	OPERATIONS PROCEDURES
7	DECOMMISSIONING and DECONTAMINATION of RADIOACTIVE COMPONENTS

8 RADIATION BUDGET

What is required from collaboration?

- 1) Brief description of experiments
- 2) Beam time on each target with radiation length, beam energy, current, time, etc (next slide)

1 DESCRIPTION

This RSAD covers the series of experiments scheduled for the spring-summer of 2025 in Hall C.

Three experiments will run during this period.

- E12-11-107: In Medium Nucleon Structure Functions, SRC, and the EMC effect
- E12-06-104: Measurement of the Ratio R=sigma_L/sigma_T in Semi-Inclusive Deep Inelastic Scattering
- E12-24-001: Measurement of the Nuclear Dependence of R=sigma_L/sigma_T in Semi-Inclusive Deep Inelastic Scattering

E12-11-107 will measure semi-inclusive deep inelastic scattering off the deuteron by "tagging" the DIS scattering with high momentum recoiling protons or neutrons emitted at large angle relative to the momentum transfer.

E12-06-104 will perform measurements of the ratio of longitudinal to transverse cross sections in pion electroproduction. The emphasis will be on measurements in the so-called semi-inclusive deep inelastic scattering region, with extensions into the exclusive region.

E12-24-001 will make limited exploratory measurements of a possible nuclear dependence of R in SIDIS to support hadron attenuation measurements. If a nuclear dependence is observed, this could be a sign of novel physics and would suggest further studies are merited. PAC52 approved 7 days to measure SIDIS from carbon and copper targets using the HMS and SHMS in Hall C. These data, in combination with the proton and deuteron data from the above E12-06-104 will allow precise determination of the nuclear dependence of R in SIDIS.

Proposals and additional information can be found at the web pages for <u>E12-11-107</u>, <u>E12-06-104</u>, and <u>E12-24-001</u> experiments, and the <u>Hall C Wiki</u>.

2 SUMMARY and CONCLUSIONS

The boundary dose accumulation due to this run in Hall C is estimated to be approximately **4 mrem**, i.e., about **40%** of the annual design goal. Dose rates averaged over the run time are expected to be below the alert threshold of 200%, with the expectations that the dose rates both inside the Hall and at the boundary will be typical for the experiments in Hall C. Radiation levels will be continually recorded and periodically checked by the Radiation Control Department (PCD) to ensure that the site boundary coal is not exceeded. Padiation because

..6

RSAD: Radiological Safety Analysis Document

	Experime	nt numbers	Hall: C		name of liaison: \	William Henry			
	E12-11-10	7 LAD (40 Days)							
	E12-06-10	4 R-SIDIS (40 Days)							
	E12-24-00	1 nucR-SIDIS (7 Days)	E12-11-107	LAD (40 Days)		LAD Total	40.00		
Parameter	Unit	<mark>3 pass commisio</mark>	ning		5 pass product	tion		3 pass producti	on
setup number		1	2	3	4	5	6	7	3
run hours (100% efficiency)	days*	1.00	1.00	0.50	35.00	1.50	1.00	1.37	13.67
beam energy	GeV	6.40	6.40	6.40	11.00	11.00	11.00	6.40	6.40
beam current	uA (CW)	20.00	60.00	10.00	5.00	40.00	60.00	60.00	60.00
polarization	%	N/A	N/A	N/A	N/A	N/A	N/A		
exp/target ID number		3 a	6	8	3	5	6	1	2
purpose		calibration	calibration	calibration	physics	dummy	calibration	physics	physics
target material (1)		LH2	С	Cu	LD2	Al	C	LD2	LH2
target thickness	mg/cm2	1420.00	2200.00	774.00	3240.00	340.00	2200.00	1620.00	710.00
target material (2)									
target thickness	mg/cm2								
target material (3)									
target thickness	mg/cm2								
cryo target window material		Al			Al			AI	А
cryo target window thickness	mg/cm2	137.00			137.00			137.00	137.00
Critical Beamline aperatu	ıre: 3.9 cı	m @ 5.57 m							
							Target ID	Target	mg/cm2
RSIDIS NOTES:							1	10 cm LD2	1620
3.125 days for checkout, kiner	natic and p	ass changes					2	10 cm LH2	710
C, and Cu running taken from	Table 2 of I	https://misportal.jlab	org/pacProp	osals/proposals/	1		3	20 cm LD2	3240
LH2 running taken from https:							3a	20 cm LH2	1420
LD2 and dummy runs were de	termined fr	om ratio to LH2 runs	found in pro	posal https://ww	v		4	10 cm dummy	340
Total days was orig. 24 produc	tion + ~ 4 d	ays setup/Moller = 28	3 days. Scale	d up LH2, LD2, an	nd Al days to get 40) PAC days	5	20 cm dummy	340
							6	optics 5 foil	2200
							7	3% C	1300
							8	6% Cu	774
							9	1.5% Al	363
							10	Carbon Hole	-

Summary

- Understand required trainings for all tasks
- All work must be defined under an EPAS. Identify hazards. Develop controls
- COO: Minimal changes required. Need to identify special procedures.
- ESAD: Straightfoward assuming all hazards have been properly identified under EPAS
- RSAD: Requires a short description of experiments and spreadsheet with detailed beam time on each
- Hall walkthough: Not discussed here but will need to be updated

