Hyper-Nuclear Stray Fields along Beamline

Steven Lassiter

Investigation into stray field from Dipole magnets on the main beam line

- A rough order of magnitude estimate to determine if a corrective magnet or beam line shielding or both is needed.
- No stray fields from Quadrupole magnets
- Uses individual Tosca solutions and superimposes fields from all Dipole magnets.
- Field directions checked for correct polarization.
- Each Model orientated to give correct location relative to layout for Hyper-Nuclear experiment in Hall C.
- UNITS: CGS unless noted.

Hall C Beam Dump

Beam Dump aperture is 39.36m downstream of pivot point with an flange opening of 0.254m diameter. Center Window of beam dump is ~4" diameter (0.10m or 0.05m radius)

HyperNuclear target is 6.58m downstream of pivot. (33.78m target to beam dump window). Beam mis-steering starts around PCS magnet ~1 meters downstream of target

¹/₂ Angle for beam to strike the smaller diameter window of the beam dump due to mis-steering of beam from PCS location is 1.5mrad (0.05/32.78).

3

HyperNuclear Stray Fields

Beam Dump Deflection Estimate

- Using the uniform Dipole estimate of
- Ø(rad) = ∫ B.dL (T.m)

(3.3356 x p (Gev))

- p =2.24 Gev
- Angle to hit edge of beam dump's inner window is 1.5 mrad.
- Overall the Maximum stray field should be less than +/- 0.0112 T.m, but one needs to keep the beam deflection with the telescoping beam line (inside radius), to minimize scrapping within the hall.
- Additionally, individual magnet's stray fields should also keep the beam with the beam pipe inside the hall.

Stray Fields Summary [T.m]

Pipe Shielding	No	No	No	Yes x3	Yes x3	Yes x3	Yes x3	Yes/No/Yes
ENGE	-0.00104	-0.00104	-0.00104	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113
PCS Case #	1	2	3	4	5	6	4	1
CC Polarity	PCS Neg CC	PCS No CC	PCS +CC	PCS Neg CC	PCS No CC	PCS +CC	PCS Neg CC	PCS Neg CC
PCS	0.1244	0.3427	0.5604	0.0921	0.2875	0.2666	0.0921	0.1244
HKS/HES Case #	3	3	3	4	4	4	4	4
HKS/HES	-0.3700	-0.3700	-0.3700	-0.1700	-0.1700	-0.1700	-0.1700	-0.1700
NPS Corrector							0.0424	0.0424
SUM	-0.2466	-0.0283	0.1894	-0.0791	0.1163	0.0954	-0.0366	-0.0043

Updated Beamline to accommodate beam deflection from stray field

PCS Stray Field kick: cases

HES and HKS Ray trace

HES and HKS Ray trace Best Option

Stray Fields - Conclusion

- A combination of passive Fe Beamline shielding, negative polarity PCS correction coils and the NPS correction magnet, the integral stray field along the Z axis can be managed to stay within the Beam dump's window aperture and not exceed the beamline.
- Of the cases that keep the integral stray field within the Beam dump window and keeps the e- beam within the downstream pipe was:

ENGE with beam pipe shielding (small effect – not used in raytracing slides)
 PCS magnets with negative polarity correction coils and with out beam pipe shielding

- 3. NPS corrector magnet (if needed)
- 4. HKS and HES with extended length beam pipe Shielding

Backup

Spectrometers' Parameters

- Beam Energy e- @ 2.24 Gev
- HKS Angle at -25.8° K+ @ 1.200 Gev/c, Kaon mass : 973.721 (relative to e-)
- PCS(K+) angle is at -11.5°
- PCS (K+): Main coil J = -393.50 AT/cm², NI = -109,167.1 A.T, N = 96, I = -1,137.2 A Trim coil J = 666.67 AT/cm², NI = 88,000.0 A.T, N = 88, I = 1,000.0 A
- HES Angle at +14.9° e- @0.744 Gev/c electron mass : 1.00
- PCS(e-) angle is at +8.5°
- PCS (e-): Main coil J = 50.50 AT/cm², NI = 14,010.7 A.T, N = 96, I = 145.9 A Trim coil J = -666.67 AT/cm², NI = -88,000.0 A.T, N = 88, I = -1,000.0 A
- Enge: 110Mev/c Pions @ Angle of 210° (-30°), Pion mass : 273.1268 (relative to e)

Z axis is towards Beam dump unless otherwise noted. Z=0 is HyperNuclear's Target center, not Hall C's

ENGE Magnet

- Ideas Model File: ENGE, Part name: ENGE_Tosca_v2, FEA Model Name: ENGE_magnet_v2
- Universal Filename: ENGE2.unv
- Nodes: 3,785,034 Quad tretra Elements: 2,746,610
- Model Geometry extents: X: -325 to 875, Y: -500 to 0, Z: -575 to 625
- Iron Beam Pipe: Length = 91 Thickness = 0.48 layout in Z from -123 to -32
- NOTE: In Opera post processing, use local CS of Theta=180 to set axis to same orientation as the other magnets.
- Current Density used is J=86 A.T/cm² or a current of ~ 209A.
- Midplane views shown for clarity.

ENGE

1

5/14/2025

ENGE - Longer Shield Pipe

ENGE Pipe Shielding

ENGE's PION Trajectory parameters

Particle Trajectories	? ×				
Trajectory type Single particle	O Beam of particles) Flux tube			
Particle Data Trajectory Start	Curren	t in beam 1			
Particle type Other	~ Acceler	ating voltage 1.1E+08			
Mass (electron units) 273, 1268 Charge (electron=-1) -1	Size of Number	Size of beam 1.0E-04 Number lines 5			
Tracking options Step length 0.1 Number of steps 10000 Tolerance 0.01	Track file nam File nam File opt	e ne Is\ENG\ENGE-pion-j86. ions New data ☑ Dis	TRACKS V V		
Calcula	ite	Cancel			

Particle Trajectories		? ×
Trajectory type Single particle	O Beam of particles O Flux tube	
Particle Data Trajectory Start Position X 0 Y 0 Z 0	Direction Parallel to Other Angles to rotate coordinate sys Around Z 0 Around new Y 210 Around new Z 0	stem
Tracking options Step length 1.1 Number of steps 10000 Tolerance 0.01 Calcula	Track file File name ENGE-V2 File options New Print data Cancel	splay trajectories

ENGE

Ray Traces for various Pion energies

UNITS Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm² Power w Force Ν

MODEL DATA ENGE j86 shileding cases.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 2 390657 elements 615083 nodes 24 conductors Nodally interpolated fields Activated in global coordinates Reflection in ZX plane (Z+X fields=0)

Field Point Local Coordinates Local = Global

PCS Magnets

- Ideas Model File: PCS-Forces, Part name: PCS Magnets Tosca, FEA Model Name: Finer Mesh withFe pipe
- Universal Filename: PCS-forces-beampipe1.unv
- Nodes: 5,065,314 Quad tretra Elements: 3,680,097
- Model Geometry extents: X: -1,270 to 1,270 Y: 0.0 to 635, Z: -508 to 1,270
- Iron Beam Pipe: Length = 152 Thickness = 0.70 layout in Z from 60.0 to 212
- Main Coils Current Density: J=86 A.T/cm^2 or a current of ~ 209A.
- Correction Coil's Current Density: +/- 666.67 A.T/cm^2 or Zero.

PCS Magnets: Calculated current excitations by matching rays to Q1's center points (with Correction coils on).

PCS V2 Correction Coils - Polarity

Stray field along Z axis Without Fe shielding : 0.124 T.m Case 1 With Fe shielding : 0.0921 T.m Case 4

PCS V2 No Correction Coils

Stray field along Z axis Without Fe shielding : 0.3427 T.m Case 2 With Fe shielding : 0.2875 T.m Case 5

PCS V2 Correction Coils + Polarity

Stray field along Z axis Without Fe shielding : 0.5604 T.m case 3 With Fe shielding : 0.2666 T.m case 6

PCS Fe Beam Pipe Force

25

Beam Kick due to just PCS magnets

PCS magnets Stray Field kick cases

HKS & HES DIPOLE

HKS DIPOLE

- Ideas Model File: HKS-Dipole
- Universal Filename: HKSandHES.inv
- Nodes: 2,809,414 Quad tretra Elements: 2,062,908
- Model Geometry extents: X: -997 to 832.5 Y: -600.0 to 0.0, Z: -193.9 to 1,352
- Iron Beam Pipe: Length = 451.4 Thickness = 0.65 (~1/4") layout in Z from 386.3 to 838.0

Ray Traces – To verify magnet settings are in the ball park. Simplified HKS Pole – Error ~5%

Stray Fields HKS, HES and Beam Pipe Shielding

HKS & HES Iron Beam Pipe Field Levels

NPS Corrector Magnet

NPS Corrector Magnet @ Full Excitation

(d) (15A)

34

NPS Corrector Magnet

Model LCS	? ×
Local coordinate system	
Origin	Orientation
x	Other \checkmark Euler angles
YO	Theta 3 Phi 90
Z 78.5	Psi 0
ОК	Cancel

UNITS

Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm² Power W Force N

MODEL DATA

NPS-Corrector-150A.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 1 680297 elements 208688 nodes 1 conductor Nodally interpolated fields Activated in coordinate system: Origin: 0.0, 0.0, 78.5 Local XYZ = Global XYZ

Field Point Local Coordinates Local = Global

Table parameters

- Units: mm and Gauss
- ENGE X: -700 to 700 Y: -100 to 100 Z: -2,000 to 0
- PCS: X: -700 to 700
 Y: -100 to 100
 Z: -1,000 to 2,500
- NPS CC: X: -700 to 700 Y: -100 to 100 Z: 250 to 500
- HKS+HES: X: -700 to 700 Y: -100 to 100 Z: -1,000 to 1,350

