Hypernuclear DAQ and preparation

May 16th 2025

Hypernuclear Collaboration Meeting

Alexandre Camsonne

Outline

- Experiment overview
- Channel count
- Trigger overview and trigger rates
- Data rates
- SuperBigbite experiment
- Cable layout
- To do
- Labor
- Conclusion

Experimental setup at Hall C

05/16/2025

Experimental setup for E05-115 (2009) at JLab Hall C

PARTICLE DETECTORS

TOF walls (Plastic scintillators)

Cherenkov detectorsAerogel (n=1.05)

• Water (n=1.33)

Drift chambers

ENGE spectrometer channels

Spectrometer	Detector	ADC	TDC	
ENGE	Fiber tracker	-	832	
	Drift chamber	_	360	
	Timing counter	-	96	
Number of to	otal channels	0	1416	

EASIROC : Time and Time over threshold for SciFi and TOF 12 V1190 or 8 VETROCs

HKS collaboration meeting

Channel count

	Detector	Current status	No. o	Pardus		
	Detector	Current status	ADC	TDC	iteauy:	
HKS	Drift Chambers	To be tested	N/A	360 + 360		
	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
HES	Drift Chambers	To be tested	N/A	1098+360		
	TOF counters	To be tested	116	116		

Channel count

	Detector	Current status	No. c	Ready		
	Detector	Current status	ADC	TDC	ittatiy:	
	Drift Chambers	To be tested	N/A	360 + 360		
HKS	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
HES	Drift Chambers	To be tested	N/A	1098+360		
	TOF counters	To be tested	116	116		

FADC = 88 + 42 + 48 + 116 = 294 channels = 19 FADCs = 2 VXS crates (NPS)

V1190 = 2268 channels = 18 V1190 = 1 VME64X crate (HMS/SHMS/SBS could use CDET VETROC)

TOF = 204 channels = 3 VETROC

ENGE = 1416 TDC channels = 8 VETROCs

Will be running during Moller : NPS,SBS,SoLID hardware available

Can use HMS/SHMS electronics

BPM rasters : 2 FADC

Total : 18 V1190 (HMS/SHMS) 11 VETROC (Cdet) and 19 FADCs (SBS BigBite, Ecal, SoLID :~ 3000 channels)

05/16/2024 VXS crates

HES Trigger

7.1. Trigger condition

7.1.1. HKS-HES trigger

The trigger condition is a coincidence between HES and HKS, $HES \otimes HKS$ Eq. (7.1) where, $HES = EHODO1 \otimes EHODO2$, Eq. (7.2) $HKS = KTOF1X \otimes KTOF2X \otimes KTOF1Y$. Eq. (7.3)

Use FADC data going to VTP to makes coincidences between the groups Can program VTP for coincidences between scintillators If use VETROC instead of V1190 could add Drift Chamber to trigger Tests crate with FADC and VTP setup in ESB, deploying VETROC

Drift chamber testing

- Fastbus system available
- Need to revive system
- Can install VETROC or more Fastbus crates to test more chambers

Trigger rates HKS/HES and DAQ rates

Areal Target density [/(g/cm²)]	Areal	Beam intensity (/μA)	HES rate (/kHz)	HKS rate (/kHz)			Accidental	(*) Assuming, HES: 30 ns width	
	[/(g/cm ²)]		e'	π+	K+	р	(/kHz)	HKS: 200 ns widt	
⁶ Li			120	22	0.27	28	1.0		
⁹ Be	100		140	21	0.26	27	1.8		
¹¹ B	100	50	170	21	0.25	26	2.1		
²⁷ AI		50	930	20	0.24	25	10.5		
⁴⁰ Ca			1100	26	0.31	33	14.8		
⁴⁸ Ca	150		940	25	0.31	32	13.8		
²⁰⁸ Pb		20	1300	8.2	0.24	10	4.9		

ENGE spectrometer

Target	$\mathcal{R}_{ m HKS}$	$\mathcal{R}_{\mathrm{Enge}}$	$\mathcal{R}_{\mathrm{Trigger}}$	$\mathcal{R}_{\mathrm{Spectrum}}$
	(kHz)	(kHz)	(Hz)	$(\mathrm{Hz}/\mathrm{MeV})$
⁶ Li	45	20	90	$5.6 imes 10^{-6}$
${}^{9}\mathrm{Be}$	25	21	50	$3.0 imes 10^{-6}$
^{12}C (Graphite)	41	20	80	$5.2 imes 10^{-6}$
^{27}Al	54	31	170	$1.0 imes 10^{-5}$
^{40}Ca	52	31	160	$9.5 imes 10^{-6}$
208 Pb	20	15	30	$1.9 imes 10^{-6}$

Trigger rate is very low compared to HKS and HES

ENGE readout

- EASIROC
- Send logic signal to VETROC
- Some experience with radiation test setup

Status of MPPC radiation test

The 1st ERR raised a concern about radiation damage on MPPC

Radiation test is ongoing in Hall-A

- Parasite on SBS experiment (April 9 ~)
- Monitoring MPPC performance & radiation dose
 - Detection efficiency
 - Noise level & Gain
- SBS experiment (as of May 7)
 - Beam current : ~ 20 μ A
 - Target : LH₂
 - Neutron flux : $100 \sim 200 \text{ mrem/h}$
 - Total dose : 7.4 rem (inside), 18.4 rem (outside)

→ Comparable to estimated Hall-C radiation

Readout – NIM-EASIROC module

EASIROC(ASIC) + FPGA + I/O module for MPPC Developed and demonstrated for scintillating fiber detector at J-PARC

2 EASIROC ASIC

- Power : NIM crat or Cable
- 32 x 2 MPPC IN
- Preamp, Shaper
- Discriminator LVDS OUT
- 1 ns LSB Multi-hit TDC
- HV and threshold fine tuning in software

ADC

- 12-bit Pipe-line ADC
- 2 x 2

FPGA

• XC7A100T-2FGG676C

VfTDC

- Multipurpose FPGA board
- 4x32 channel front panel + 2 x 32 back panel
- 18 ps per bin
- To develop
 - VTP trigger
 - VTP readout
- Test and develop
 - Timing resolution
 - Software for vfTDC readout , offset and timewalk corrections

Data rates with time / integral

- Event size
 - 13 kB with time and amplitude 100 % occupancy
 - Estimated occupancy 5% maximum
- Max trigger rate : 15 KHz
- Max data rate : 190 MB/s
- Expected data rate : 9.5 MB/s
- Can be handled now by Hall C DAQ
- Tape : ~ 0.2 PB

SuperBigbite experiment

• Ecal

- 1800 channels
- FADC trigger and readout
- 7 crates with 13 to 16 FADCs
- One VTP per crate
- 50 m and 100 m cables
- Coordinate detector
 - 2352 channel of MaPMT
 - Nino amplifier discriminator
 - 2352 / 16 = 147 ribbon cables
 - LVDS repeater
 - ~ 1 ns timing resolution
 - Software developed by CNU

Additional electronics

- Beamline info
 - Target and beamline BPM
 - Raster
 - 1C12 BPM

Cabling to SHMS hut

Cabling to SHMS hut

MRPC

- MRPC
 - 12 modules (3 planes x 4) to cover HKS, HES, ENGE
 - Hope to get 50 ps timing resolution On bench 25 ps reached
 - 256 channels per module = 3048 channels of high resolution TDC = 16 VETROC
 - Default : use SBS NINO and VETROC from CDET (20 ps)
 - Other readout but need to procure (few modules to test now)
 - PicoTDC
 - NALU ASOC or AARDVARC

To do / Testing

- Bench testing and testing with detector VETROC
- Setup FADC trigger with VTP
- Setup testing in ESB
 - Cerenkov
 - TOF scintillator
 - Wire chamber
 - VfTDC test
- Setup beamline crate

Labor

- Hanjie Liu (DAQ, Trigger)
- Teppei Iwamoto (Detector, Trigger)
- Sho Nagao, Ken Nishida (ENGE SiPM, Easyroc)
- William Henry (DAQ, detectors)
- Chandan Gosh (DAQ, detectors)
- Sangwha Park (Software)
- Alexandre Camsonne (DAQ, Trigger, Beamline)
- Toshiyuki Gogami (Detector testing and setup)
- Ben Raydo (VTP)

Conclusion

- HKS,HES
 - FADC = 88 + 42 + 48 + 116 = 294 channels = 19 FADCs = 2 VXS crates
 - V1190 = 2268 channels = 18 V1190 = 1 VME64X crate or 2 VXS crates
 - TOF = 204 channels = 3 VETROC
 - All modules available from SHMS/HMS/NPS/SBS hardware
- CODA3 with 20 kHz trigger rate (should be able to handle 200 KHz limited by tape cost)
- Digital trigger using FADC, VTP and VETROC
- Expected rate 10 MB/s, can be handled by current Hall C DAQ
- Getting setup in ESB for detector tests

Backup

		ADC	TDC	Event size	Occupan	су				
HKS										
	Drift chamber		720	2880				High resolution		204
	TOF counter	88	88	1056				Low resolution		2268
	Aerogel Cherenkov	42	42	504						
	Water Cherenkov	48	48	576						
								FADC	19	
HES	Drift Chambers		1458	5832						
	TOF counter	116	116	1392				V1190		18
								VETROC		3
ENGE	SciFi		360	2882				V1290		7
	DC		832	6658				F1		4
	TOF		96	770						
						183.6	MB/s max			
					Expecte	d 10	MB/s		2.625333	PB
						2625333120	MB	Expected	~0.3	PB