Role of Hyperon Interactions in Neutron Stars and Supernova Cores

Hajime Togashi (Kyoto University)

Outline1 : Introduction2 : Hyperon mixing in neutron star3 : Hyperon mixing in supernova matter4: Future plan & Summary

1. Introduction

The nuclear equation of state (EOS) plays important roles for astrophysical studies. Core-Collapse Supernovae Neutron Star Mergers

Neutron Star Matter & Supernova Matter Neutron Stars (NS)

- T = 0 MeV, $Y_p \sim 0.1$
- Various EOS has been proposed.

Supernovae / NS mergers

- Wide range of T, Y_{p} , n_{B}
- Limited number of EOSs are applicable.

Nuclear Matter Theory for Equation of State

1. Analytically expressed function

• e.g. Expansion around saturation density

$$\frac{E}{A}(\rho,\beta) = E_0 + \frac{1}{2}K_0x^2 + \frac{1}{6}Q_0x^3 + \left(S_0 + Lx + \frac{1}{2}K_{\rm sym}x^2 + \frac{1}{6}Q_{\rm sym}x^3\right)\beta^2 + \dots$$
$$x = (\rho - \rho_0)/3\rho_0 \qquad \beta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$$

2. Mean field theory with effective nuclear interaction

• Effective Hamiltonian & Slater determinant (simple product wave function)

- Skyrme Hartree-Fock - Relativistic mean field theory

3. Many-body calculation with bare interaction

- *Realistic Hamiltonian & correlated wave function*
 - Brueckner-Hartree-Fock
 - Correlated basis function

- Variational method
- Quantum Monte Carlo method

Hyperon Matter Theory for Equation of State

1. Analytically expressed function

• Extend the functional expansion under some assumptions

e.g.) Hyperon symmetry energy S_Y

$$E(\rho, \delta_N, \delta_Y) = E(\rho, 0, 0) + S_N(\rho)\delta_N^2 + S_Y(\rho)\delta_Y^2 + \dots$$

2. Mean field theory with effective nuclear interaction

• Effective interactions in the nuclear medium need to be newly constructed using the experimental data on hypernuclei.

3. Many-body calculation with bare interaction

• **Bare interactions (two-body & three-body)** are directly connected to the EOS, providing a clear link between baryon forces and matter properties.

Hyperon Puzzle and Its Possible Solutions

Possible Solutions of the Hyperon Puzzle

Hyperon-hyperon two-body repulsion

Hot Topic these days • Quark phase appearance (at densities below the hyperon threshold)

Hyperon Puzzle and Its Possible Solutions

Possible Solutions of the Hyperon Puzzle

Variational EOS for astrophysical simulations

Variational EOS with realistic nuclear forces

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, and M. Takano, NPA961 (2017) 78)

Constructed by the variational many-body theory with bare nuclear forces (AV18+UIX)

This EOS is applicable to the studies for <u>neutron stars</u> and <u>core-collapse supernovae</u>.
This EOS table is available on the web: http://www.np.phys.waseda.ac.jp/EOS/

Normal nuclear EOS dependence in core-collapse simulations is gradually being investigated.

Extend to the EOS table for hyperon-mixed nuclear matter by using the simplified bare baryon forces

2. Hyperon mixing in Neutron Star

Hamiltonian of Hyperonic Nuclear Matter

$$H = -\sum_{i=1}^{N} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < j}^{N} V_{ij} + \sum_{i < j < k}^{N} V_{ijk}$$

Interactions for nuclear sector

- Argonne v18 (AV18) two-body potential - Urbana IX (UIX) three-body potential

Interactions for hyperonic sector

- two-body **central** potential (E. Hiyama et al., PRC 74 (2006) 054312) (E. Hiyama et al., PRC 66 (2002) 024007)

- Constructed so as to reproduce the experimental binding energies of light hypernuclei

Uncertainty in Hyperon Interactions

I. $\Lambda\Lambda$ two-body interaction in odd-state

II. Hyperon three-body interactions in ΛNN , $\Lambda \Lambda N$, and $\Lambda \Lambda \Lambda$ (UIX pot. type)

ΛΛ repulsion effect on neutron star structure

(HT, E.Hiyama, Y. Yamamoto, M. Takano, PRC 93 (2016) 035808)

Repulsion strength is not enough to support the massive neutron stars.

Three-body effects on neutron star structure

3. Hyperon mixing in supernova matter

Core-collapse mechanism of massive stars

Hyperon Fraction in Supernova Matter

Supernova matter

- Charge neutral and Isentropic matter (The entropy per baryon $S \sim 1-2$)

4. Next Steps in Hyperon Matter Study

Weak Reaction Rates in nuclear medium should also be provided by nuclear physics. \rightarrow Key ingredient for emitted neutrino light curves Neutron Star Cooling Core-Collapse Supernovae 6.6 1052 (PRC 97 (2018) 035804) *S*₀ *p*: AO 1051 6.4 n: BEEHS- $L_{\nu}(erg/s)$ 1050 6.2 logashi $\log_{10} T_{\text{eff}}^{\infty}$ (K) 1049 igh)+S(low 6 15 5.8 $\langle E_{\nu} \rangle (MeV)$ 10 5.6 5 (PTEP 2019, 113E01) 5.4 0 2 3 5 6 O 50 100 10 time (sec) $\log_{10} t$ (yr) **EOS: Hyperon effects included** In our simulations Weak reaction rate: Hyperon effects neglected

Reaction rates for core-collapse simulations

Summary

We investigate the hyperon mixing effect using the EOS based on bare hyperon interactions with the variational method.

ΛΛ two-body Repulsion

• Repulsion strength is not enough to support the massive neutron stars.

Three-Baryon Repulsion

- ANN three-body force is affect on the onset density of hyperon in NS & supernova core.
- $\Lambda\Lambda N$ and $\Lambda\Lambda\Lambda$ three-body forces affect on the maximum mass of neutron stars.

Hypernuclear experiments are essential to improve our understanding of dense astrophysical phenomena!