Decay Pion Spectroscopy of Lambda Hypernuclei at Jefferson Lab

"High-resolution spectroscopy of light hypernuclei with the decay pion spectroscopy"

(Run group proposal, simultaneous run with (e,e'K⁺))

The University of Tokyo Sho Nagao

Hypernuclear Chart (S=-1, up to p-shell)

NOTE: B_A from hypernuclei database [https://hypernuclei.kph.uni-mainz.de/]

Precise Measurement of Λ Binding Energy

Study of NN and BB interaction

$$B_{\Lambda} = M_{core} + M_{\Lambda} - M_{HYP}$$

Core	Λ	Hypernucleus
Mass	Mass	Mass

High-resolution spectroscopy available

Weakly interacting Λ and N $\rightarrow \tau(g.s) \sim 200$ ps, $\Gamma(e.x \mbox{ above Sn}) < 100 \mbox{ keV}$

Good probe for *NN* interaction / (Hyper)nuclear structure

Mass, Isospin dependence etc. provide important information about effective $\Lambda N/\Lambda NN$ interaction

Light hypernuclei that can be applied for precise calculations are useful probes thanks to the recent progress of theories

Possible to approach changes of nuclear structure and deformation using Λ as a probe

Determination of Lambda binding energy

Hypertriton (Z=1, n=1, L=1 system)

- $J^{P} = 1/2^{+}$
- T = 0

Lambda binding energy •

> B_Λ = 130±50(stat.) keV [M. Juric et al., NPB52(1973)1.] Loosely bound system

Lambda halo nucleus

Mesonic Weak Decay (MWD) dominant

Similar lifetime to free-Lambda (263.4 ps) ??

15

10

5

0.2

0.4

Hypertriton B (MeV)

R (fm)

 $R = \sqrt{\langle r_{\Lambda-d}^2 \rangle} = \sqrt{\hbar^2/(4\mu B_{\Lambda})}$

0.6

0.8

1.0

Hypertriton Puzzle

Related topics

Key information of ΛN CSB effect

Larger difference than pp & nn

Hypernuclides	$\Delta B_{\Lambda}(Exp)$	Hiyama	Gal	NLO13	NLO19	
	(keV)	[PTP128(2012)105] _ [PLE	[PRC107(2023)024002] .744(2015)352] [FBsyst.672(2021)105]			
$^{4}_{\Lambda} \mathrm{He} - ^{4}_{\Lambda} \mathrm{H}$	300 ± 60		226	252(43)	238(10)	
$^7_\Lambda { m Li}^* - ^7_\Lambda { m He}$	-320 ± 140	130(-60)	-17	-31(-5)	-16(-17)	
$^8_{\Lambda}{ m Be} - ^8_{\Lambda}{ m Li}$	40 ± 80		49	178(16)	146(-6)	
$^9_{\Lambda}\mathrm{B} - ^9_{\Lambda}\mathrm{Li}$	-160 ± 210		-54			
$^{10}_{\Lambda}\mathrm{B} - ^{10}_{\Lambda}\mathrm{Be}$	100 ± 300	20(-180)	-136			
$^{11}_{\Lambda}\mathrm{B}^* - ^{11}_{\Lambda}\mathrm{Be}$	N/A					

- \succ Large symmetry breaking of Λp - Λn
- > Under discussion of its origin (Σ mixing?)
- Necessity of systematic studies

Decay Pion Spectroscopy

Hypernuclear Mass Spectroscopy with FWHM ~ 100 keV Stat. Error < 10 keV Systematic ~ 10 keV

Principle

➤ Measurement of mono. decay pion from hypernuclei stopped in the target emitting pion in two-body decay (e.g. ⁴_ΛH → ⁴He + π⁻) Hyp. ID from known (or expected) B_Λ

Tagging K⁺ for background suppression from non-strangeness production

Possible hypernuclei & Decay pion momenta (up to A=16)

Decay pion from a hypernucleus has specific momentum

- Daughter nucleus mass is well known usually
- Possible hypernuclei (hyperfragments) depend on the target nucleus

Example, ${}^{4}_{\Lambda}H \rightarrow {}^{4}$	⁴ He + π ⁻		
$M(^{A}_{\Lambda}Z) = \sqrt{M}$	r(A(Z +	$(-1))^2 + p_\pi^2 + \sqrt{M_\pi^2}$	$+ p_{\pi}^{2}$
Μ	Ι(α)	= 3727.3794118(11)	MeV/c ²
Μ	l(π)	= 139.57039(18)	MeV/c ²
Μ	I(⁴ ∧H)	= 3922.56(4)	MeV/c ²
p	(π)	= 133.03(6)	MeV/c

Hypernuclei	Decay mode	p_{π^-} (MeV/c)	comments		
$\frac{3}{\Lambda}$ H	$^{3}\text{He} + \pi^{-}$	114.37			t
${}^{4}_{\Lambda}$ H	$^{4}\text{He} + \pi^{-}$	133.03			
$\frac{4}{\Lambda}$ He	$4Li + \pi^{-}$	98.17	Impossible 2-body decay		
$-\frac{5}{\Lambda}$ He	$\frac{5}{\text{Li} + \pi^{-}}$	99.26	Impossible 2-body decay		
$^{6}_{\Lambda}$ H	${}^{6}\text{He} + \pi^{-}$	135.27			61 i targat
⁶ He	${}^{6}\text{Li} + \pi^{-}$	108.48			°Li target
<u> </u>	$^{6}\text{Be} + \pi^{-}$	-	No B_{Λ} data, above Sp		
$^{7}_{\Lambda}$ He	$^{7}{ m Li} + \pi^{-}$	115.10			
⁷ Li	$^{7}\text{Be} + \pi^{-}$	108.11			
$-\frac{7}{\Lambda}$ Be	$^{7}C + \pi^{-}$	95.90	Impossible 2-body decay		
⁸ He	$^{8}\text{Li} + \pi^{-}$	116.47			
^{'8} Li	${}^{8}\text{Be} + \pi^{-}$	124.20			
[§] Be	$^{8}\mathrm{B} + \pi^{-}$	97.19	No ⁸ B(g.s) decay		0.0
³ Li	${}^{9}\text{Be} + \pi^{-}$	121.31			⁹ Be target
⁹ Be	${}^{9}\text{B} + \pi^{-}$	96.98			
³ B	${}^{9}C + \pi^{-}$	96.82			
¹⁰ Li	${}^{10}\text{Be} + \pi^{-}$	-	No B_{Λ} data		
^{fð} Be	${}^{10}\mathrm{B} + \pi^{-}$	104.41	11		
$^{10}_{\Lambda}$ B	${}^{10}C + \pi^{-}$	100.49			
$^{11}_{\Lambda}$ B	$^{11}C + \pi^{-}$	86.54			
$^{12}_{\Lambda}B$	${}^{12}C + \pi^{-}$	115.87		12	C target
$\frac{12}{\Lambda}C$	$^{12}N + \pi^{-}$	91.48	No ¹² N(g.s) decay		
$^{13}_{\Lambda}$ C	$^{13}N + \pi^{-}$	92.27			
$^{14}_{\Lambda}$ C	$^{14}N + \pi^{-}$	101.20			
$^{14}_{\Lambda}N$	$^{14}O + \pi^{-}$	-	No B_{Λ} data		
¹⁵ N	$^{15}O + \pi^{-}$	98.40	11	10-	
16 ^N	$^{16}O + \pi^{-}$	106.23		1ºO	target
$\frac{16}{\Lambda}O$	$^{16}F + \pi^{-}$	86.54			

${}^{4}_{\Lambda}$ H peak in DPS (MAMI)

MAMI 2012 (SpekC, 125 µm Be)

1.8

2.2

B₄ (MeV)

2

2.4

2.6

from "s-" to "p-" "sd-"

Hypernuclear project at Jefferson Lab Hall-C

E12-24-004

E12-24-011

⁶Li, ⁹Be, ¹¹B(e,e'K⁺)⁶ He, ⁹ Li, ¹¹ Be

Study of charge symmetry breaking in p-shell hypernuclei

²⁷Al(e,e'K⁺)²⁷ Mg

Study of a triaxially deformed nucleus using a Lambda particle as a probe

40, 48Ca(e,e'K⁺)^{40, 48}^K

An isospin dependence study of the ΛN interaction through the high precision spectroscopy of Λ -hypernuclei with electron beam

²⁰⁸Pb(e,e'K⁺)²⁰⁸,Tl

E12-20-013 / E12-24-003

E12-15-008 / E12-24-013

Studying A interactions in nuclear matter with the $^{208}Pb(e,e'K^+)^{208}{}_{\Lambda}TI$ reaction

s-, p-shell hypernuclei with Decay Pion Spectroscopy

E12-15-008A / E12-20-013A

High-resolution spectroscopy of light hypernuclei with the decay pion spectroscopy

New Experiment at Jefferson Lab.

2025/5/16

Characteristics of DPS at JLab

RTMA Terma				
	DPS @MAMI	DPS @JLab		
Target	Li / Be (39 mg/cm ² for Be)	Li / Be / B / C / Al / Ca / Pb (100 ~ 150 mg/cm²)	⇔	Various hypernuclei
Beam Energy / Current	1.5 GeV / (20 μA for Be)	2.24 GeV / 50 μA		Effective Λ production
Beamtime	~ 2 weeks	~ 1 year		Better yield
K ⁺ Tag Efficiency	~20%	~80%		
π ⁻ angle	90~120 deg	150 deg		Better PID, S/N
π^- mom. resolution	<1×10 ⁻³ (FWHM)	2×10 ⁻³ (FWHM)		
mom. coverage	110 ~ 135 MeV/c	70 ~ 150 MeV/c		Covered Entire region
"K ⁺ , π^- " time resolution	2000 ps	< 200 ps		Lifetime measurement
2025/5/16 JLab Hypernu	uclear Collaboration Meeting 2025			p.13

Pion Spectrometer Enge

"Hardware" spectrometer Enge

 Particle momentum from Focal Plane position 60 keV / mm Dispersion

FP Position detector (Scinti+SiPM) in vacuum

- Full Mom. coverage from decay pions (70 ~150 MeV/c)
- Drift Chamber (spare HKS DC) for reconstruction to the
- Timing & Trigger detector
- a few 10 kHz single rate ٠

Pion Spectrometer Enge

Expected Spectrum

Expected on ⁶Li target

Monte-Carlo simulation by

- ✓ Spec. Resolution
- Hyperfragment yield
- \checkmark π^- branching ratio

✓ Background from QF

✓ Accidental Background

Simplest spectrum

Clear peak from ${}^{4}_{\Lambda}$ H, ${}^{3}_{\Lambda}$ H FWHM = 260 keV/c Low QF background Low accidental δB_{Λ} = several keV (stat.)

 $N(_{\Lambda}^{4}H) @MAMI = 40 cnt / 2 weeks$ $N(_{\Lambda}^{4}H) @JLab = 600 cnt / 1 weeks$

Expected Spectrum

Additional peaks ${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$: Reference peak ⁷∧He Isospin partner of A=7 system Charge Symmetry Breaking on p-shell ⁸^{Li} \rightarrow ⁸Be + π^{-} CSB on A=8 system ⁶^AH Evidence of super heavy hydrogen

Expected Spectrum

Expected on ¹²C target

Clouded spectrum, but separable ${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$: Reference peak ¹²_AB : Directly produced hyp. Large cross-section, branching ratio 2-peaks from different daughter \rightarrow Spin-Parity assignment ^{10,11} Be, ^{10,11} B Isospin partner hyp. Good for p-shell CSB study ⁹ **Be** Many ${}^{9}B+\pi^{-}$ decay in emulsion ⁸^{Li} Famous ⁸Be+ π^{-} decay channel

Lifetime measurement (by product)

Summary

Lambda hypernuclei as a multi-body system with strangeness

High-resolution spectroscopy available thanks to narrow width of hypernuclear state Investigation of AN interaction nuclear medium / (hyper)nuclear structure possible More precise discussion on going thanks to recent progress of both experiment and calculation

High-resolution spectroscopy of electro-produced hypernuclei

Decay Pion Spectroscopy

Novel technique for B_{Λ} measurement from Decay Pion momentum measurement Excellent resolution (FWHM ~ 100 keV) and precision ($\delta B_{\Lambda} \sim 10$ keV) Measurement of hypernuclear ground-state started at MAMI, Germany Improving hyp. yield ~30 times thanks to better beam intensity & PID etc. Expecting decay pions from several s-, p-, (sd-) shell hypernuclei

Re-determination of Hypernuclear g.s. A binding energies