JLab Hypernuclear Collaboration Meeting, Jefferson Lab, US, May 15-16, 2025

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

> Graduate School of Science, Kyoto University Toshiyuki Gogami

May 15, 2025 KYOTO UNIVERSITY

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Charge Symmetry Breaking (CSB)

Balanced

Unbalanced

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Charge Symmetry Breaking (CSB), the mystery

*1) J.H.E.Mattauch et al., Nucl. Pys. 67, 1 (1965).

81 keV after Coulomb correction

[R.A.Brandenburg, S.A.Coon et al., NPA294, 305 (1978)]

Figure from proposal of <u>JLab E12-19-002</u>

~400 KeV after Coulomb correction

3 /19

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Previous study of CSB effect for A = 7 at JLab

TG et al., PRC 94, 021302(R) (2016)

E. Hiyama et al., PRC80, 054321 (2009) Phenomenological CSB potential

$$\begin{split} V_{\Lambda N}^{\text{CSB}}(r) \\ &= -\frac{\tau_z}{2} \bigg[\frac{1+P_r}{2} \big(v_0^{\text{even},\text{CSB}} + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N v_{\sigma_{\Lambda} \cdot \sigma_N}^{\text{even},\text{CSB}} \big) e^{-\beta_{\text{even}} r^2} \\ &+ \frac{1-P_r}{2} \big(v_0^{\text{odd},\text{CSB}} + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N v_{\sigma_{\Lambda} \cdot \sigma_N}^{\text{odd},\text{CSB}} \big) e^{-\beta_{\text{odd}} r^2} \bigg], \end{split}$$

Parameters were adjusted to reproduce the binding energies of ${}^4_{\Lambda}$ He, ${}^4_{\Lambda}$ H, ${}^8_{\Lambda}$ Li, ${}^8_{\Lambda}$ Be hypernuclei

The calc. w/o the CSB potential is more consistent with the data. The origin of CSB is more complex?

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

ΛN-ΣN coupling effect

A. Gal and D. Gazda, J. Phys.: Conf. Ser. 966 012006 (2018)

Mirror hypernuclear data for p-shell systems

Energies in keV

6 /19

Isomultiplet	$^4_{\Lambda}\mathrm{He}{-}^4_{\Lambda}\mathrm{H}$	$^{7}_{\Lambda}\mathrm{Be}{-}^{7}_{\Lambda}\mathrm{Li}^{*}$	$^{7}_{\Lambda}\mathrm{Li}^{*}\mathrm{-}^{7}_{\Lambda}\mathrm{He}$	$^{8}_{\Lambda}\mathrm{Be}{-}^{8}_{\Lambda}\mathrm{Li}$	$^9_\Lambda \mathrm{B}{-}^9_\Lambda \mathrm{Li}$	$^{10}_{\Lambda}\mathrm{B}{-}^{10}_{\Lambda}\mathrm{Be}^{*}$
Shell model (Gal et al.)	+226	-17	-28	+49	-54	-136
Cluster model (Hiyama et al.)		+150	+130			+20
No-core shell model (Le et al.)	+238	-35	-16	+143		
Experiment	$+233 \pm 92$	-100 ± 90	-20 ± 230	$+40 \pm 60$	-210 ± 220	-220 ± 250

A. Gal, and D. Gazda, Jour. Phys.: Conf. Ser. 966, 012006 (2018)
E. Hiyama et al., Prog. Theor. Phys. 128, 105 (2012).
H. Le et al., Phys. Rev. C 107, 24002 (2023)

Existing data accuracy is not sufficient for CSB study ($\Delta B_{diff} > 200 \text{ keV}$) $\rightarrow \Delta B_{diff} \sim 100 \text{ keV}$ for A = 6, 7, 9, 10, 11, 12

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Mirror Hypernuclear Study

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

GRADUATE SCHOOL OF SCIENCE FACULTY OF SCIENCE KYOTO UNIVERSITY

Missing mass spectroscopy for A hypernuclei

TG et al., EPJ Web Conf. 271, 11002 (2022)

S-2S (2025∼) A: A = 7, 10, 12 E: A = 12, 7

8 /19

HES-HKS (2027~) A: A = 6, 9, 11, 12, 27, 40, 48, 208

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

Shell	A	Component	Isospin			CSB study	
		Component	T<0	T=0	T>0	w/ 100 keV accur.	
S	4	d N \Lambda (0+ / 1+)	0	-	0 0	Yes	
p	6	αΝΔ		-			
	7	αΝΝΛ	O (JLab)	0	0	Yes	
	8	α d N Λ	0	-	Ο	Yes	
	9			0			
	10	ααΝΛ	O (JLab)	-			
	11	ααΝΝΛ					
	12	α α d N Λ	O (JLab)	-			

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

9

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

	Shall	A	Component		lsospin	CSB study				
	SIICII		Component	T<0	T=0	T>0	w/ 100 keV accur.			
	S	4	d N \Lambda (0+ / 1+)	O E12- 19-002	-	0 0	Yes Yes			
		6	αΝΔ	This prop.	-	J-PARC	Yes			
	р	7		O (JLab)	Ο	Ο	Yes			
		8	α d N Λ	0	-	Ο	Yes			
		9		This prop.	0		Yes			
		10	ααΝΛ	O (JLab)	-	J-PARC E94	Yes			
		11	ααΝΝΛ	This pro.	J-PARC		Yes			
		12	α α d N Λ	O (JLab)	-	J-PARC E94	Yes			
Res	esearch of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe									

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

/19

C111	А	Component	Isospin			CSB study			
Snell		Component		T<0	T=0	T>0	w/ 100 ke	eV accur.	
$D = f = \frac{1}{2} - \frac{1}{2$								Yes Yes	
Data from JLab ($_{\Lambda}^{\circ}$ He, $_{\Lambda}^{\circ}$ Ll, $_{\Lambda}^{\circ}$ Be)								Yes	
are unique and necessary to pin								Yes	
						Yes			
down the CSB origin							Yes		
	10	αα	ΝΛ	O (JLab)		J-PARC E94	Yes		
	11	ωα		This pro.	J-PARC		Yes Yes		
	12	αα	d N A	O (JLab)	-	J-PARC E94			
esearch of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe							SCHOOL OF SCIENCE FACULTY F SCIENCE		

R

Expected Spectra (JLab E12-24-004)

Total accuracy:

$$\left|\Delta B_{\Lambda}^{\text{total}}\right| = \sqrt{\left(\Delta B_{\Lambda}^{\text{stat.}}\right)^2 + \left(\Delta B_{\Lambda}^{\text{sys.}}\right)^2} \leq 70 \text{ keV}$$

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Japan Proton Accelerator Research Complex (J-PARC), Ibaraki, Japan

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

J-PARC E70 experiment (E hypernuclear spectroscopy) is being carried out now!

2023.6 commissioning 2024.4—6 commissioning 2025.1—2 comm. + calib. 2025.4—5 Physics data

16 /19

0.9M K⁻/spill (K:π = 3.3)

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Preliminary (π⁺,K⁺) data

High resolution spectroscopy by π beam which is complementary with JLab experiments is promising

Opened new era for studying CSB / isospin dependent interaction!

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

CSB study by J-PARC and JLab data

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Summary

Hypernuclear research

- ♦ The most important tool to investigate strange baryonic interaction
- ♦ Various features (production, energy levels, decay) are investigated in the world
- ♦ Missing mass spectroscopy at JLab and J-PARC is unique
 - \diamond High resolution / High Accuracy / Wide mass range \rightarrow CSB, Multi-body force etc.

JLab (HES-HKS, 0.6 MeV FWHM, 0.07 MeV accuracy, 2027-)

- $(e, e'K^+)$ reaction at $\omega = 1.5 \text{ GeV}$
- ♦ ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{6}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ Be, ${}^{27}_{\Lambda}$ Mg, ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K, ${}^{208}_{\Lambda}$ Tl → Λ N CSB, Λ NN, tri-axial deformation

J-PARC (S-2S, 1.0 MeV FWHM, 0.1 MeV accuracy, 2025-)

- (π^+, K^+) and (K^-, K^+) reactions at p = 1.05 and 1.8 GeV/c
- ♦ ${}^{6}_{\Lambda}\text{Li}, {}^{10}_{\Lambda}\text{B}, {}^{12}_{\Lambda}\text{C}, {}^{7}_{\Xi}\text{H}, {}^{12}_{\Xi}\text{Be} \rightarrow \Lambda \text{N CSB, }\Xi \text{N interaction}$

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Thank you for your attention

Hitachi Seaside Park, Ibaraki, Japan

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Hypernucleus

Nucleon only up, down quarks

Hyperon (u, d +) strange (s) quark

Hypernucleus

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

The mass at the moment of production

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Baryon interaction study through hypernuclei

Hyperon(Y)-nucleon(N) interaction More general baryon-baryon interaction

→ Plenary talk by A. Gal on Mar 30

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

New experiment at JLab Hall-C (2027~)

- High resolution: 0.6 MeV FWHM
- High accuracy: 0.07 MeV
- Wide mass number: A = 6-208

New experiment at JLab Hall-C (2027~)

- High resolution: 0.6 MeV FWHM
- High accuracy: 0.07 MeV
- Wide mass number: A = 6-208

Experimental setup

- High resolution: 0.6 MeV FWHM
- High accuracy: 0.07 MeV •
- Wide mass number: A = 6-208

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

Energy Calibration (example from JLab E05-115)

High accuracy spectroscopy is passible

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Approved Hypernuclear Experiments (proposed by JLab Hypernuclear Collaboration)

- 1 E12-15-008 $\rightarrow {}^{40}_{\Lambda}K, {}^{48}_{\Lambda}K$ "Isospin dependence of ΛN interaction" 2 E12-19-002 $\rightarrow {}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$ "Hypertriton puzzle, s-shell CSB"
- 3 E12-20-013 $\rightarrow {}^{208}_{\Lambda}$ TI

"ANN three body force"

(4) E12-24-004 $\rightarrow {}^{6}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ Be

"p-shell CSB"

≡ E12-24-011 → ²⁷_ΛMg

" Search for triaxially deformation states in ²⁶Mg"

Decay-pion spectroscopy

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

$^{27}Al(e, e'K^+)^{27}_{\Lambda}Mg$ (JLab E12-24-011)

$^{26}Mg \times p_{\Lambda} \rightarrow Probing triaxially deformation$

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

New constrains from astronomical observations

Microscopic study (← nuclear/hypernuclear research) has become more important as the macroscopic study is in great progress

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Reactions used at J-PARC and JLab

Hadron Beams @J-PARC, Japan

Electron Beams @JLab, US

33 / 19

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Missing-mass spectroscopy at JLab

Electro-production

- Better understanding of reaction Good
- Small cross section
- Larger noise as Z gets larger

Primary beam

- High precision / small emittance Good
- High intensity → thin target
 (→ High energy resolution)

Virtual photo production → Large spin flip amplitude coord

34 /19

 $p \rightarrow \Lambda$

- → Good calibration with proton target
- → Mirror Hypernuclear study

 $^{46}\text{Ti}(e, e'K^+)^{46}\text{Sc}$

M. Isaka et al., PRC 89, 024310 (2014)

Less bound as the core is more deformed due to smaller overlap between core and Λ

35 / 19

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

M. Schäfer et al., PRC 105, 015202 (2022)

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Resonant nnA state

<u>nnΛ</u>

✓ Resonant state may exist
 ✓ Energy + width → n∧ Interaction
 ✓ Strongly related to $B_{\Lambda}(^{3}_{\Lambda}H)$ → E12-19-002 (HKS)

(e,e'K⁺) reaction spectroscopy in 2018

Unti-strange quark

Strange quark

Missing-mass measurement at JLab -> Sensitive to both bound and resonant states !!

c.f.) Invariant mass spectroscopy is sensitive to only bound state

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Progress of Theoretical and Experimental Physics

The cross-section measurement for the ${}^{3}H(e, e'K^{*})nn\Lambda$ reaction \Im

K N Suzuki 🖾, T Gogami, B Pandey, K Itabashi, S Nagao, K Okuyama, S N Nakamura, L Tang, D Abrams, T Akiyama, D Androic, K Aniol, C Ayerbe Gayoso, J Bane, S Barcus, J Barrow, V Bellini, H Bhatt, D Bhetuwal, D Biswas, A Camsonne, J Castellanos, J-P Chen, J Chen, S Covrig, D Chrisman, R Cruz-Torres, R Das, E Fuchey, K Gnanvo, F Garibaldi, T Gautam, J Gomez, P Gueye, T J Hague, O Hansen, W Henry, F Hauenstein, D W Higinbotham, C E Hyde, M Kaneta, C Keppel, T Kutz, N Lashley-Colthirst, S Li, H Liu, J Mammei, P Markowitz, R E McClellan, F Meddi, D Meekins, R Michaels, M Mihovilovič, A Moyer, D Nguyen, M Nycz, V Owen, C Palatchi, S Park, T Petkovic, S Premathilake, P E Reimer, J Reinhold, S Riordan, V Rodriguez, C Samanta, S N Santiesteban, B Sawatzky, S Širca, K Slifer, T Su, Y Tian, Y Toyama, K Uehara, G M Urciuoli, D Votaw, J Williamson, B Wojtsekhowski, S A Wood, B Yale, Z Ye, J Zhang, X Zheng

Progress of Theoretical and Experimental Physics, Volume 2022, Issue 1, January 2022, 013D01, https://doi.org/10.1093/ptep/ptab158 Published: 06 December 2021 Article history ▼

https://doi.org/10.1093/ptep/ptab158 (see also here)

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Recent related paper → K. Okuyama et al., PRC 110, 025203 (2024)

PHYSICAL REVIEW C

Letter

Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the $(e, e'K^+)$ reaction with a tritium target

B. Pandey¹, L. Tang ^{1,2,*}, T. Gogami^{3,4}, K. N. Suzuki⁴, K. Itabashi³, S. Nagao³, K.
Okuyama³, S. N. Nakamura³, D. Abrams⁵, I. R. Afnan⁶, T. Akiyama³, D. Androic⁷, K. Aniol⁸, T. Averett⁹, C. Ayerbe Gayoso⁹, J. Bane¹⁰, S. Barcus⁹, J. Barrow¹⁰, V. Bellini¹¹, H. Bhatt¹², D. Bhetuwal¹², D. Biswas¹, A. Camsonne², J. Castellanos¹³, J-P. Chen², J. Chen⁹, S.
Covrig², D. Chrisman^{14,15}, R. Cruz-Torres¹⁶, R. Das¹⁷, E. Fuchey¹⁸, C. Gal⁵, B. F. Gibson¹⁹, K. Gnanvo⁵, F. Garibaldi^{11,20}, T. Gautam¹, J. Gomez², P. Gueye¹, T. J. Hague²¹, O.
Hansen², W. Henry², F. Hauenstein²², D. W. Higinbotham², C. Hyde²², M. Kaneta³, C.
Keppel², T. Kutz¹⁷, N. Lashley-Colthirst¹, S. Li^{23,24}, H. Liu²⁵, J. Mammei²⁶, P. Markowitz¹³, R. E. McClellan², F. Meddi¹¹, D. Meekins², R. Michaels², M. Mihovilovič^{27,28,29}, A. Moyer³⁰, D. Nguyen^{16,31}, M. Nycz²¹, V. Owen⁹, C. Palatchi⁵, S. Park¹⁷, T. Petkovic⁷, S.
Premathilake⁵, P. E. Reimer³², J. Reinhold¹³, S. Riordan³², V. Rodriguez³³, C. Samanta³⁴, S. N. Santiesteban²³, B. Sawatzky², S. Širca^{27,28}, K. Slifer²³, T. Su²¹, Y. Tian³⁵, Y. Toyama³, K. Uehara³, G. M. Urciuoli¹¹, D. Votaw^{14,15}, J. Williamson³⁶, B. Wojtsekhowski², S. Wood², B. Yale²³, Z. Ye³², J. Zhang⁵, and X. Zheng⁵ (Hall A Collaboration)

https://doi.org/10.1103/PhysRevC.105.L051001

Experimental setup at Hall A

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

CYOTO UNIVERSITY

H₂ in T₂ target

A few % of H₂ compared to T₂

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Cross section spectrum for Λnn

Unbinned maximum likelihood fit $(-20 < B_{\Lambda} < 20 \text{ MeV})$ **Probability density function (PDF):**

<u>1. Response function (RF)</u>
 ➢ Geant4 simulation

<u>2. Decay width</u>➢ Breit Wigner

3. QF shape $(-B_{\Lambda} > 0)$ → Unknown → Linear function \otimes RF

<u>4. Combinatorial background</u>
 ➢ Data → the 4th order polynomial

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Cross section analysis

K.N. Suzuki et al., <u>PTEP 2022</u>, 1, 013D01 (2022)
 TG et al., <u>WPJ Web Conf. 271</u>, 02002 (2022)

Fit by unbinned max. likelihood

(*1) H. Kamada, K. Miyagawa, and M. Yamaguchi, EPJ Web Conf. 113, 07004 (2016). (*2) V. B. Belyaev, S. A. Rakityansky, and W. Sandhas, Nucl. Phys. A 803, 210–226 (2008).

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Upper limit at 90% C.L. (2-D scan)

Upper limit $x_{U.L}$:

Theoretical calculations to be compared with the results are awaited !!

45 / 19

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Particle Detectors

TG et al., NIMA 900, 69—83 (2018) TG et al., NIMA 729, 816—824 (2013) **Cherenkov** detectors

Κ⁺, π',

46 /19

- Aerogel (n=1.05)
- Water (n=1.33)

TOF walls (Plastic scintillators)

Drift chambers

HES HKS

TOF walls (Plastic scintillators)

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

Hall A

- K. Okuyama et al., PRC 110, 025203 (2024)
- B. Pandey et al., PRC 105, L051001 (2022)
- K.N. Suzuki et al., PTEP 2022, 1, 013D01 (2022)
- F. Garibaldi et al., PRC 99, 054309 (2019)
- G. M. Urciuoli et al., PRC 91, 034308 (2015)
- F. Cusanno et al., PRL 103, 202501 (2009)
- G. M. Urciuoli et al., NIMA612, 56-68 (2009)
- M. lodice et al., PRL 99, 052501 (2007)

Hall C

- TG et al., PRC 103, L041301 (2021)
- TG et al., NIMA 900, 69—83 (2018)
- TG et al., PRC 94, 021302(R) (2016)
- TG et al., PRC 93, 034314 (2016)
- Y. Fujii et al., NIMA795, 351—363 (2015)
- L. Tang et al., PRC 90, 034320 (2014)
- S.N. Nakamura et al., PRL 110, 012502 (2013)
- TG et al., NIMA 729, 816—824 (2013)
- L. Yuan et al., PRC 73, 044607 (2006)
- T. Miyoshi et al., PRL 90, 232502 (2003)

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Experimental parameters for the next JLab Experiment (2027-)

Item Value Energy (/GeV) 2.24Beam (e) 1×10^{-4} (FWHM) (Required) energy spread and drift Central momentum $p_{e'}^{\text{cent.}}$ [/(GeV/c)] 0.74Central angle $\theta_{ee'}^{\text{cent.}}$ 8.5° PCS + HES (e')Solid angle acceptance $\Omega_{e'}$ (/msr) (at $p_{e'}^{\text{cent.}}$) 3.4 4.4×10^{-4} (FWHM) Momentum resolution $\Delta p_{e'}/p_{e'}$ Central momentum $p_{K^+}^{\text{cent.}}$ [/(GeV/c)] 1.20Central angle $\theta_{eK^+}^{\text{cent.}}$ 11.5° $PCS + HKS(K^+)$ Solid angle acceptance Ω_{K^+} (/msr) (at $p_{K^+}^{\text{cent.}}$) 7.0 2.9×10^{-4} (FWHM) Momentum resolution $\Delta p_{K^+}/p_{K^+}$ $\sqrt{s} = W (/\text{GeV})$ 1.912 $Q^2 \, [/({\rm GeV}/c)^2]$ 0.036 K^+ scattering angle wrt virtual photon, $\theta_{\gamma^*K^+}$ 7.35° $p(e, e'K^+)\Lambda$ 0.590.0096 ϵ_L

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

TABLE II. Summary of the kinematics parameters in the proposed experiment.

Active fiber target (AFT)

Energy loss & straggling correction

Event-by-event correction by AFT worked

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Energy spectrum with the (K^{-}, K^{+}) reaction

T. Harada, Y. Hirabayashi, A. Umeya, NPA 914, 85–90 (2013)

ΛΛ hypernuclei may be observed

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

Research of Charge Symmetry Breaking in the Lambda-Nucleon Interaction by Electron Probe

T. Gogami (Kyoto Univ.), JLab Hypernuclear Collab. Meeting, May 15, 2025

S = -1"as well

T. Gogami et al., <u>EPJ Web Conf. 271, 11002 (2022)</u>.

