Incorporating

QED effects in SHERPA

parton showers for

the EIC

MC4EIC 2025

Daniel Reichelt

- Event simulation factorised into
 - Hard Process
 - Parton Shower
 - PDF/Underlying event
 - Hadronisation
 - QED radiation
 - Hadron Decays

- Event simulation factorised into
 - Hard Process
 - Parton Shower
 - PDF/Underlying event
 - Hadronisation
 - QED radiation
 - Hadron Decays

Parton shower approach principles

we know how dominant corrections to higher orders behave:

- picture: emission of additional gluons/photons from emitter, same divergence structure, only different colour factor
- repeats at all orders → we can iteratively generate emissions from the hard process + from subsequent emissions

Start from Born type event

Start from Born type event

 add radiation from hard particles according to universal IR limits

- Start from Born type event
- add radiation from hard particles according to universal IR limits
- iterate to build up fully differential radiation pattern

- Start from Born type event
- add radiation from hard particles according to universal IR limits
- iterate to build up fully differential radiation pattern

- Event simulation factorised into
 - Hard Process
 - Parton Shower
 - PDF/Underlying event
 - Hadronisation
 - QED radiation
 - Hadron Decays

- Event simulation factorised into
 - Hard Process
 - Parton Shower
 - PDF/Underlying event
 - Hadronisation
 - QED radiation
 - Hadron Decays

Methods for fully differential predictions

- Include at fixed order (see e.g.
 Djangoh+Heracles at HERA)
 - calculate $e^-p \rightarrow e^-\gamma p$ with IR cuts, combine with Born process and virtual + soft corrections
- The YFS procedure
 - based on all order QED treatment, very successful for example for LEP
- Use a QED parton showers
 - Regularly applied for QED corrections to charged final states

Initial state QED radiation

- Initial-initial lepton case:
 - classic application of YFS as used by LEP experiments
 - new implementation available in Sherpa
 - Structure function: inclusive treatment, resuming (next-to) leading logarithms
 - QED Showers: in principle applicable, but problems overestimating pdfs

Initial-Final QED showers

- DIS case
 - one lepton in initial, one in final state
 - no clear separation in dipole shower picture
 - several stumbling stones for solutions
 - "Full" QED shower: need practical solution for structure function treatment in backward evolution
 - YFS: need massive leptons everywhere, develop IF case
 - both with technical problems to solve, focus of current developments II (and lesser extent FF) case

Structure functions + FS shower approach

- Idea: IS radiation is dominated by collinear photons ⇒ use structure function for that
- Combine with **FS shower**, based on collinear splitting function, recoil against hadronic final state X (i.e. don't touch initial electron)
- Test: ignore quark charges and fix their energy (i.e. $e^-\nu_\mu \to e^-\nu_\mu$) for unambiguous **ME comparison**

Preliminary results

- **First results** for generic observables related to radiated photons, in $e^-p \rightarrow e^-p$ with 1 photon emission from the QED shower
- "Reasonable" (?) behavior
- Community question:
 - define relevant benchmarks?
 - i.e. what plot/comparison would you want to see?

