

Sherpa 3.0 for the EIC

Max Knobbe MC4EIC 09 July 2025

Sherpa 3.0 released in July 2024 🎉

Bothmann et al, JHEP 12 (2024) 156

Event generation with SHERPA 3

Enrico Bothmann , a Lois Flower , b,c Christian Gütschow , d,e Stefan Höche . f Mareen Hoppe , Joshua Isaacson , Max Knobbe , Af Frank Krauss , b Peter Meinzinger , b,h Davide Napoletano , Alan Price , Daniel Reichelt , b,h Marek Schönherr , b,* Steffen Schumann and Frank Siegert and Frank Siegert

- new Physics features
- More intuitive and flexible user interface
- More efficient CPU footprint
- Modern build system
- Comprehensive, automatic validation suite
- Developed on https://gitlab.com/sherpa-team/sherpa

Sherpa bundles full chain in one tool!

Hard/perturbative components

- Builtin tree level matrix-elements
 - Comix, Amegic
 - Wide range of processes: ee, ep, pp, complex final states
- Higher-order QCD corrections
 - Automated matching/merging
- (Approximate) NLO EW corrections
 - EWvirt, EWsudakov
- Builtin Parton Showers
 - CSS, (Dire), Alaric

Sherpa bundles full chain in one tool!

Soft/non-perturbative components

- Fragmentation
 - Ahadic, interface to Pythia8
- Hadron decays
- Multiple interactions
- Soft color interactions
- Higher-order QED effects
 - YFS resummation

Sherpa code & performance

- roughly 400k lines of code
 - Mostly c++ plus Python3 interface
- development fully open source on gitlab
 - https://gitlab.com/sherpa-team/sherpa
- Input cards in yaml format
- Release format
 - Major: 3.**x**.y
 - Minor: 3.x.**y**
 - Currently at 3.0.1, 3.0.2 imminent
- Extensive performance and maintenance improvements
- Work on implementing GPUs into the toolchain

NLL accurate parton shower: Alaric

- Parton showes accuracy measured in log-accuracy
- CSSHOWER and Dire not formally NLL accurate
- Alaric development based on split of soft and collinear dyn.
 - [Herren et al, JHEP 10 (2023) 091]
- Extended to massive splittings
 - [Assi, Hoeche, Phys. Rev. D 109 (2024) 11, 1]
- Multijet merging
 - [Hoeche, Krauss, Reichelt, Phys.Rev.D 111 (2025) 9]
- NLO matching soon
 - [Hoeche, Meinzinger, Reichelt, tbp]

Automatic electroweak corrections

- Fixed order NLO EW automated
 - [Schönherr, Eur.Phys.J.C 78 (2018) 2, 119]
- EWvirt approximation uses IR regulated exact virtual cores
 - [Kallweit et al, JHEP 11 (2017) 120]
 - expensive, use for low multis.
- Ensued approximates EW
 Sudakov logarithms
 - [Bothmann Napoletano, Eur.Phys.J.C 80 (2020) 11, 1024]
 - Cheap use everywhere else
- YFS resummation of soft and virtual gluons

Bothman et al., JHEP 06 (2022) 064

BSM processes

- UFO interface for BSM physics
 - [Hoeche et al., Eur.Phys.J.C 75 (2015) 3, 135]
- Sherpa can be used as signal and background generator
 - Straight forward to have consistent setup
- Support for form factors, custom props, spin correlations, decay tables, multi-jet merging

Biekoetter et al, Phys.Lett.B 814 (2021) 136079

Sherpa for DIS

Inclusive NC-DIS at NNLO

Phys.Rev.D 98 (2018) 11 [Hoeche, Kuttimalai, Li]

- Parton-shower matched next-to-next-to-leading-order QCD
- Good agreement with fixed order and data

MEPS@NLO neutral and charged current DIS at the EIC

2506.08994 [Meinzinger, Reichelt, Silvetti]

- large corrections for the virtuality and the Bjorken-x distributions

MEPS@NLO neutral and charged current DIS at the EIC

2506.08994 [Meinzinger, Reichelt, Silvetti]

- large corrections for the virtuality and the Bjorken-x distributions

MEPS@NLO neutral and charged current DIS at the EIC

2506.08994 [Meinzinger, Reichelt, Silvetti]

- Recently observed, hadronisation uncertainties significant for EIC sets
- Most significantly, switching model introduces large variations
 - Consistent tune in preparation
- Impact or remaining soft physics models unclear
 - color reconnections?

Tuning for DIS

2306.17736 [MK, Reichelt, Schumann]

- relevant components of Cluster model tuned to H1 data
 - Using apprentice and available rivet analysis
 - Relying exclusively on analysis available via Rivet
 - Multiple tunes of similar quality as uncertainty estimates
- Used e.g. for uncertainty estimates for 1-jettiness
- At the moment missing: consistent tune for string fragmentation

Polarized event generation

Polarized cross sections in Sherpa

[Hoppe, Schönherr, Siegert, JHEP 04 (2024) 001]

- Physical polarisation states not universally defined
 - Only for on-shell particles
 - Additionally definition is frame dependent
- For W/Z intermediate states we need to make approximations
 - Neglect non-resonant contributions
 - Consider only on-shell bosons
 - Some off-shell effects can be recovered, but intrinsic inaccuracies
- Use Narrow-width approximation

$$\left[\frac{1}{p^2 - m^2 + im\Gamma}\right]^2 \to \frac{\pi}{m\Gamma}\delta(p^2 - m^2)$$

Polarized cross sections, cont'd

- Decompose amplitudes into polarization components
- Three modes, left, right, longitudinal. Unphysical fourth contribution vanishes in NWA.
- Often diagonal terms are dominant
 - Sherpa automatically also takes interference into account

- NWA errors usually small

Towards a fully polarized framework

- Polarized matrix elements <a>
- Polarized intermal vector bosons <a>
- Polarized Parton shower
 - New approach using splitting functions
 in: [Campbell et al, 2505.10408]
 - Soon to be released
 [Hoeche, Hoppe, Reichelt Siegert]
- Polarized Hadronization
 - First steps taken more development required

[MK, Krauss]

- Fully polarized framework within reach

Photoproduction in Sherpa

Resolves Photons in Sherpa

[Hoeche, Krauss, Meinzinger, Eur. Phys. J. C 84 (2024) 2, 178]

- Total jet production cross-section in e-p dominated by Q² photoproducion
- For large Q² >> 0: predictions available for up to N3LO
- For ≅0, only (N)LO + Shower or fixed order NLO
- Available in Sherpa at NLO + PS accuracy

Resolved Photons in Sherpa

[Krauss, Meinzinger, Phys. Rev. D 109 (2024) 3, 034037]

- Limiting factor for pheno often the quality of photon pdf
- Currently 11 PDFs directly implemented in Sherpa
 - Currently no standard interface via e.g. LHAPDF
- Deviations up to 50%
- Couplings inconsistent with modern PDFs
- No error estimates

Conclusions

- Sherpa3 contains a large number of physics improvements
- Well setup for precision calculations for next gen. collider experiments

Other than that:

- More intuitive and flexible user interface
- More efficient CPU footprint
- New HPC/GPU workflows
- Modern build system

Any questions? Ask me or head over to: https://sherpa-team.gitlab.io

Acknowledgement

This manuscript has been authored by FermiForward Discovery Group, LLC under Contract No. 89243024CSC000002 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

