Pythia 8 for EIC

MC4EIC

Ilkka Helenius

July 9, 2025

Outline

Pythia 8: A general purpose event generator

- Latest release 8.315 (May 27, 2025)
- A complete physics manual for 8.3 [SciPost Phys. Codebases 8-r8.3 (2022)]

Outline

- Introduction to Pythia 8
- Deep inelastic scattering (DIS)
- Photoproduction Pythia 8
 - Proton target
 - Nuclear target
- Summary & Outlook

[figure by P. Skands]

Pythia 8 Collaboration

Current members

(in 8.315 release)

Javira Altmann

(Monash University)

Christian Bierlich

(Lund University) (University of Glasgow)

Naomi CookeIlkka Helenius

(University of Jyväskylä)

Philip Ilten

(University of Cincinnati)

• Leif Lönnblad

(Lund University)

Stephen Mrenna

(Fermilab)

- Christian Preuss (University of Wuppertal)
- Torbjörn Sjöstrand (Lund University)
- Peter Skands

(Monash University)

[Pythia Week in Oxford 2024]

- Spokesperson
- Codemaster
- Webmaster

https://pythia.org authors@pythia.org

1. Hard Process

 Scattering process from perturbative QCD

$$\begin{split} \mathsf{d}\sigma^{\mathsf{A}\mathsf{B}\to\mathsf{k}\mathsf{l}+\mathsf{X}} &= f_\gamma^\mathsf{A}(\mathsf{y}) \otimes f_\mathsf{j}^\gamma(\mathsf{x}_\gamma,\mu^2) \\ & \otimes f_\mathsf{j}^\mathsf{B}(\mathsf{x}_\mathsf{p},\mu^2) \otimes \mathsf{d}\sigma^{\mathsf{i}\mathsf{j}\to\mathsf{k}\mathsf{l}} \end{split}$$

- 1. Hard Process
- 2. Parton showers
 - Apply DGLAP evolution equations

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \, \mathrm{d}z$$

- 1. Hard Process
- 2. Parton showers
- 3. Multiparton interactions (MPIs)
 - Regulate cross section with p_{TO}

$$\frac{\mathrm{d}\sigma^{2\rightarrow2}}{\mathrm{d}p_{\mathrm{T}}^{2}}\propto\frac{\alpha_{\mathrm{s}}(p_{\mathrm{T}}^{2})}{p_{\mathrm{T}}^{4}}\rightarrow\frac{\alpha_{\mathrm{s}}(p_{\mathrm{T0}}^{2}+p_{\mathrm{T}}^{2})}{(p_{\mathrm{T0}}^{2}+p_{\mathrm{T}}^{2})^{2}}$$

• Can interpret as colour screening

- 1. Hard Process
- 2. Parton showers
- 3. Multiparton interactions (MPIs)
- 4. Hadronization
 - Add beam remnants
 - Connect partons with colour strings

- 1. Hard Process
- 2. Parton showers
- 3. Multiparton interactions (MPIs)
- 4. Hadronization
 - Add beam remnants
 - Connect partons with colour strings
 - Let strings decay into stable hadrons with Lund string model

- 1. Hard Process
- 2. Parton showers
- 3. Multiparton interactions (MPIs)
- 4. Hadronization
- 5. Analyze the event by deriving an observable of interest, e.g. by running jet algorithm

Available beam configurations in Pythia 8

Hadronic collisions

- p-p: hard, soft and low-energy processes
- *h*-p, where $h = \pi^{\pm,0}, K^{\pm,0}, \phi^0, \dots$

Collisions with leptons

- e^+e^- , including $\gamma\gamma$ (also in p-p)
- e-p: (neutrino) DIS, photoproduction with soft and hard QCD processes

Heavy-ion collisions with Angantyr

- A-A, p-A and *h*-A
- UPCs with proton target, also VMD-A
- Some cosmic-ray related processes

Alternative shower model dipoleRecoil

[B. Cabouat and T. Sjöstrand, EPJC 78 (2018 no.3, 226)]

- Alternative to the default global recoil approach, keeps the scattered lepton momentum intact
- Reasonable description of single-particle properties, such as transverse energy flow

Ongoing improvements

- Fix for kinematics construction in DIS (8.316)
- A Preliminary tune to HERA DIS data with

Parameter	Value	Default	Min	Max
StringZ:aLund	1.24	0.68	0.40	1.60
StringZ:bLund	0.73	0.98	0.40	1.60
StringPT:sigma	0.474	0.335	0.250	0.800

Jet production in DIS

[I. Helenius, J. Laulainen, C.T. Preuss: JHEP 05 (2025) 153]

- Parton shower generate emissions from a Born-level hard-process
- · Accurate only for soft and collinear emissions
- Matrix element corrections helps at high- Q^2 but still misses low- Q^2 high- E_T part

Merging in DIS

- Start from hard events with several partons in the final state
- Combine with parton shower emissions using merging algorithms to avoid double counting

[H1: EPJC 77 (2017) 215]

Jet production in DIS

[I. Helenius, J. Laulainen, C.T. Preuss: JHEP 05 (2025) 153]

- Parton shower generate emissions from a Born-level hard-process
- · Accurate only for soft and collinear emissions
- Matrix element corrections helps at high- Q^2 but still misses low- Q^2 high- E_T part

Merging in DIS

- Start from hard events with several partons in the final state
- Combine with parton shower emissions using merging algorithms to avoid double counting

[H1: EPJC 77 (2017) 215]

Photon structure at $Q^2 \approx 0$ **GeV**²

Partonic structure of resolved (anom. + VMD) photon encoded in photon PDFs

$$f_i^{\gamma}(\mathbf{x}_{\gamma}, \mu^2) = f_i^{\gamma, \text{dir}}(\mathbf{x}_{\gamma}, \mu^2) + f_i^{\gamma, \text{anom}}(\mathbf{x}_{\gamma}, \mu^2) + f_i^{\gamma, \text{VMD}}(\mathbf{x}_{\gamma}, \mu^2)$$

- $f_i^{\gamma, \text{dir}}(x_\gamma, \mu^2) = \delta_{i\gamma}\delta(1 x_\gamma)$
- $f_i^{\gamma,\text{anom}}(x_\gamma,\mu^2)$: Perturbatively calculable
- $f_i^{\gamma,VMD}(x_{\gamma},\mu^2)$: Non-perturbative, fitted or vector-meson dominance (VMD)

ZEUS dijet measurement

- $Q^2 < 1.0 \, \text{GeV}^2$
- $134 < W_{\gamma p} < 277 \, \text{GeV}$
- ullet $E_{\mathsf{T}}^{\mathsf{jet1}} > 14\,\mathsf{GeV}, E_{\mathsf{T}}^{\mathsf{jet2}} > 11\,\mathsf{GeV}$
- $-1 < \eta^{\text{jet1,2}} < 2.4$

Two contributions

 Momentum fraction of partons in photon
 photon
 piet1
 piet2
 piet2

$$x_{\gamma}^{\mathrm{obs}} = rac{E_{\mathsf{T}}^{\mathrm{jet1}} \mathrm{e}^{\eta^{\mathrm{jet1}}} + E_{\mathsf{T}}^{\mathrm{jet2}} \mathrm{e}^{\eta^{\mathrm{jet2}}}}{2\mathsf{y}\mathsf{E}_{\mathrm{e}}} pprox \mathsf{x}_{\gamma}$$

• At high- $x_{\gamma}^{\mathrm{obs}}$ direct processes dominate

[ZEUS: EPJC 23 (2002) 615-631]

See also: [I.H., P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

ZEUS dijet measurement

- $Q^2 < 1.0 \, \text{GeV}^2$
- $134 < W_{\gamma p} < 277 \,\text{GeV}$
- ullet $E_{\mathsf{T}}^{\mathsf{jet1}} > 14\,\mathsf{GeV}, E_{\mathsf{T}}^{\mathsf{jet2}} > 11\,\mathsf{GeV}$
- $-1 < n^{\text{jet1,2}} < 2.4$

Two contributions

 Momentum fraction of partons in photon

$$x_{\gamma}^{ ext{obs}} = rac{E_{\mathsf{T}}^{ ext{jet1}} \mathrm{e}^{\eta^{ ext{jet1}}} + E_{\mathsf{T}}^{ ext{jet2}} \mathrm{e}^{\eta^{ ext{jet2}}}}{2\mathsf{y}\mathsf{E}_{\mathsf{e}}} pprox \mathsf{x}_{\gamma}$$

• At high- x_{\sim}^{obs} direct processes dominate

See also: [I.H., P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

ZEUS dijet measurement

- $Q^2 < 1.0 \, \text{GeV}^2$
- $134 < W_{\gamma p} < 277 \,\text{GeV}$
- $E_{T}^{\text{jet1}} > 14 \, \text{GeV}, E_{T}^{\text{jet2}} > 11 \, \text{GeV}$
- $-1 < n^{\text{jet}1,2} < 2.4$

Two contributions

Momentum fraction of partons in

$$\textbf{photon} \\ \textbf{x}_{\gamma}^{\text{obs}} = \frac{\textbf{E}_{T}^{\text{jet1}} \text{e}^{\eta^{\text{jet1}}} + \textbf{E}_{T}^{\text{jet2}} \text{e}^{\eta^{\text{jet2}}}}{2\textbf{y}\textbf{E}_{\text{e}}} \approx \textbf{x}_{\gamma}$$

• At high- x_{\sim}^{obs} direct processes dominate

See also: [I.H., P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

Charged particle photoproduction in HERA

$H1p_T$ spectrum

- Data for $W_{\gamma p} \approx 200 \, \text{GeV}$
- Some sensitivity to MPI parameters at low p_T
- Rivet analysis available

[H1: EPJC 10 (1999) 363-372]

Charged particle photoproduction in HERA

$H1p_T$ spectrum

- Data for $W_{\gamma p} \approx 200 \, \text{GeV}$
- Some sensitivity to MPI parameters at low p_T
- Rivet analysis available

ZEUS multiplicity distribution

- High multiplicities very sensitive to MPIs
- Improved description using preliminary ep tune
- Rivet analysis in the works

[ZEUS: JHEP 12 (2021) 102]

Charged particle photoproduction in HERA

$H1p_T$ spectrum

- Data for $W_{\gamma p} \approx 200 \, \text{GeV}$
- Some sensitivity to MPI parameters at low p_T
- Rivet analysis available

ZEUS multiplicity distribution

- High multiplicities very sensitive to MPIs
- Improved description using preliminary ep tune
- Rivet analysis in the works
- → Input for validation and tuning

[ZEUS: JHEP 12 (2021) 102]

Photoproduction on proton target at the EIC

- Min. bias events with $E_e = 18$ GeV and $E_p = 275$ GeV with $W_{min} = 50$ GeV
- Compare results with different MPI parameterizations

Uncertainties will be reduced after tuning to HERA photoproduction data

Multiplicity distributions in UPCs at the LHC

• Multiplicity distribution well reproduced in γ +p interactions

- High multiplicities missed with γ +p
 - → Multi-nucleon interactions

Nuclear targets with Pythia

Angantyr model for heavy ions in Pythia

[Bierlich, Gustafson, Lönnblad, Shah; JHEP 10 (2018) 134]

- Monte Carlo Glauber to sample nucleon configurations
- Cross section fluctuations, fitted to partial nucleon-nucleon cross sections
- Secondary (wounded) collisions as diffractive excitations
- Can now handle generic hadron-ion and varying energy
- ⇒ VMD-nucleus scatterings

[I. H., M. Utheim: EPJC 84 (2024) 11, 1155]

Multiplicity distributions in UPCs at the LHC with Pythia

[I. Helenius, M. Utheim: EPJC 84 (2024) 11, 1155]

- ATLAS data not corrected for efficiency, estimated with $N_{ch}^{rec} \approx 0.8 \cdot N_{ch}$
- Relative increase in multiplicity well in line with the VMD-Pb setup

Rapidity distributions in UPCs at the LHC

[I. Helenius, M. Utheim: EPJC 84 (2024) 11, 1155]

- Multiplicity cut adjusted according to the limited efficiency
- Good description of the measured rapidity distribution with the VMD-Pb setup

Photoproduction on nuclear target at the EIC

- Min. bias events with $E_e = 18$ GeV and $E_n = 275$ GeV with $W_{min} = 50$ GeV
- Compare results with proton and nuclear targets, latter modelled with VMD

- A similar increase of high-multiplicity events as in UPCs at the LHC
- More particles produced in the lead-going direction
- VMD: in 80 % of events the photon fluctuates into a ρ meson

Summary & Outlook

Summary

- Pythia implementation of γp tested extensively against HERA data
- Still room for further validation and tuning (HERA, UPC@LHC, ...)
- VMD to model collisions with nuclear targets, in line with ATLAS UPC data

Ongoing efforts

- Automated MPI tuning for DIS and γp
- Improvemnts for DIS handling
- Further model improvements and validation with nuclear targets

[figure by P. Skands]

Ultraperipheral heavy-ion collisions

- Large impact parameter $(b \gtrsim 2R_A)$ \Rightarrow No strong interactions
- EM field of fast-moving charges described as a flux of low-virtuality photons
- At LHC relevant for p+p, p+Pb, Pb+Pb
- Similar to γ p in e+p colliders (HERA)

Can study

- $\gamma \gamma$ to I^+I^- , $\gamma \gamma$, Higgs, ...
- Exclusive particle production in γ p/Pb where also target hadron survives
- Inclusive processes, target hadron breaks up, jets, hadrons, multiplicities

Ultraperipheral heavy-ion collisions

- Large impact parameter $(b \gtrsim 2R_A)$ \Rightarrow No strong interactions
- EM field of fast-moving charges described as a flux of low-virtuality photons
- At LHC relevant for p+p, p+Pb, Pb+Pb
- Similar to γ p in e+p colliders (HERA)

Can study

- $\gamma \gamma$ to I^+I^- , $\gamma \gamma$, Higgs, ...
- Exclusive particle production in γ p/Pb where also target hadron survives
- Inclusive processes, target hadron breaks up, jets, hadrons, multiplicities

Automized tuning with Professor 2[†]

- Use the 3-/4-jet data from ZEUS
- Vary p_{T0}^{ref} and α , 100 points in parameter space
- ullet Build interpolating function, minimize χ^2

Preliminary findings

- Large sensivity to MPI parameters at small x_{γ}^{obs}
- A good fit simultaneously to several observables

[ZEUS: NPB 792 1 (2008)]

See also:

[J.M. Butterworth, I.H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

[†] [A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern: EPJC 65 (2010) 331-357]

Automized tuning with Professor 2[†]

- Use the 3-/4-jet data from ZEUS
- Vary p_{T0}^{ref} and α , 100 points in parameter space
- ullet Build interpolating function, minimize χ^2

Preliminary findings

- Large sensivity to MPI parameters at small $x_{\gamma}^{\mathrm{obs}}$
- A good fit simultaneously to several observables
- Tune improve agreement with ZEUS multiplicity distribution

[ZEUS: JHEP 12 (2021) 102]

See also:

[J.M. Butterworth, I.H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

[†] [A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern: EPJC 65 (2010) 331-357]

Experimental heavy-ion UPC classification

 Event selection typically relies on Zero-degree calorimeters (X > 0)

XnXn: At least one neutron on both sides

⇒ A+A (hadronic interaction)

XnOn: At least one neutron only on one side

 $\Rightarrow \gamma + A$

OnOn: No neutrons on either side

 $\Rightarrow \gamma + \gamma$

Ann.Rev.Nucl.Part.Sci. 70 (2020) 323-354

Possible caveats

- Additional EM interactions may break up the nuclei in "near-encounter" events
 [Eskola, Guzey, Helenius, Paakkinen, Paukkunen; PRC 110 (2024) 054906]
- Also diffractive processes will keep nuclei intact
 - \Rightarrow Xn0n condition will remove diffractive contribution to γ +A

See e.g. [Guzey, Klasen; PRD 104 (2021) 11 114013]

Dijets in ultra-peripheral heavy-ion collisions in OnOn

- Per-event yield underestimated by a factor of ten!
- Shape in a reasonable agreement
- $\gamma\gamma \to \mu^+\mu^-$ ok so likely a QCD effect \Rightarrow Contribution from diffractive events?

- Resolved contribution dominates total cross section
 - \Rightarrow Set up an explicit VMD model with linear combination of vector-meson states $(\rho, \omega, \phi \text{ and } J/\psi)$
 - Use VM PDFs from SU21
 [Sjöstrand, Utheim; EPJC 82 (2022) 1, 21]
 - Cross sections from SaS [Schuler, Sjöstrand; PRD 49 (1994) 2257-2267]
 - Sample collision energy from flux
- ⇒ Vector meson-proton scatterings

Alternative VMD-based approach

- Resolved contribution dominates total cross section
 - \Rightarrow Set up an explicit VMD model with linear combination of vector-meson states $(\rho, \omega, \phi \text{ and } J/\psi)$
 - Use VM PDFs from SU21 [Sjöstrand, Utheim; EPJC 82 (2022) 1, 21]
 - Cross sections from SaS [Schuler, Sjöstrand; PRD 49 (1994) 2257-2267]
 - Sample collision energy from flux
- ⇒ Vector meson-proton scatterings
 - In line with the full photoproduction

[ZEUS: JHEP 12 (2021) 102]

Vector meson dominance (VMD)

Linear combination of three components

$$|\gamma\rangle = c_{\mathsf{dir}}|\gamma_{\mathsf{dir}}\rangle + \sum_{q} c_{q}|q\overline{q}\rangle + \sum_{\mathsf{V}} c_{\mathsf{V}}|\mathsf{V}\rangle$$

where the last term includes a linear combination of vector meson states up to $\ensuremath{J/\Psi}$

$$c_{
m V}=rac{4\pilpha_{
m EN}}{f_{
m V}^2}$$

V	$f_{V}^{2}/(4\pi)$
ρ^0	2.20
ω	23.6
ϕ	18.4
J/Ψ	11.5

Two-particle correlations in γ +A with Pythia

[ATLAS: PRC 104, 014903 (2021)]

[I. Helenius, M. Utheim: EPJC 84 (2024) 11, 1155]

- No finite v_2 left after template fit in the Pythia simulation
 - ⇒ Revisit with final state effects such as rope hadronization and string showing

Dijets in ultra-peripheral heavy-ion collisions in Xn0n

- Good agreement out of the box when accounting both direct and resolved
- EM nuclear break-up significant
- Pythia setup with nucleon target only \Rightarrow Is such a setup enough for γ +A?

$$H_{T} = \sum_{i} p_{T,i}$$

$$z_{\gamma} = \frac{M_{\text{jets}}}{\sqrt{s_{\text{NN}}}} e^{+Y_{\text{jets}}}$$

$$x_{A} = \frac{M_{\text{jets}}}{\sqrt{s_{\text{NN}}}} e^{-Y_{\text{jets}}}$$

[ATLAS: PRD 111 (2025) 5, 052006]

Collectivity in UPCs at the LHC

• Finite v_2 for γ +p, in line with Pythia

⇒ Jet-like correlations?

 Finite v_n also after Template fit subtracting "non-flow"

Inclusive D-meson production in UPCs

- New experimental analyses for open charm production in UPCs ongoing in CMS and ALICE
- Can use Pythia UPC implementation to calculate cross-section predictions

[A.-M. Levälampi: Research training thesis, 2024]