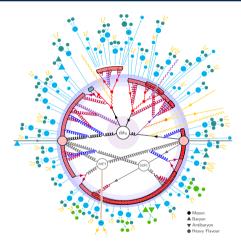
Event generator overview

MC4EIC

Ilkka Helenius

July 9th, 2025



Outline

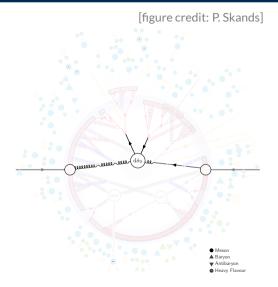
Outline

- Event generators for high energy colliders
- 2. Electroproduction
- 3. Photoproduction
- 4. Diffractive processes
- 5. Tuning
- 6. MC4EIC recap

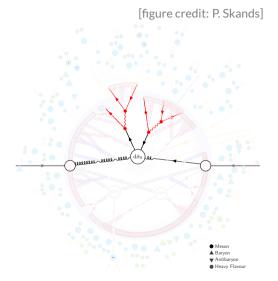
[figure by P. Skands]

Event generators

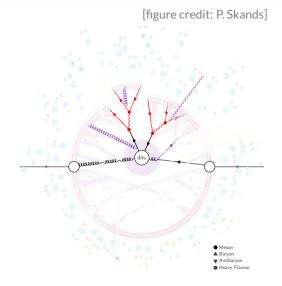
General purpose event generators

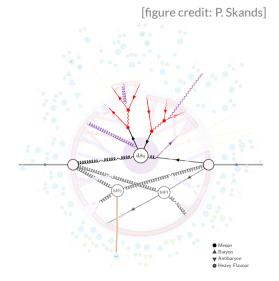

- Aim to provide a full description of a collision event, ie. exclusive hadronic final states, using Monte Carlo methods
- Use perturbative QCD where applicaple, fill in with phenomenologica models
- Main players:
 - Herwig (7.3.0) https://herwig.hepforge.org [Eur.Phys.J. C80 (2020) 452]
 - Pythia (8.315) https://pythia.org [SciPost Phys. Codebases 8-r8.3 (2022)]
 - Sherpa (3.0.1) https://sherpa-team.gitlab.io [JHEP 12 (2024) 156]

Specialized event generators


- Matrix-element (Hard-process) generators for higher perturbative accuracy and multiplicities: Madgraph5(_aMC@NLO), POWHEG(-BOX)
- Fixed-order codes: MCFM, NNLOJET, ...

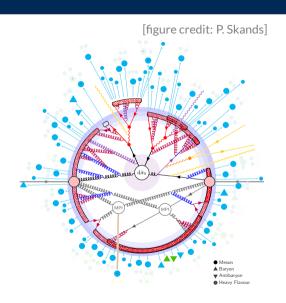
Classify event generation in terms of "hardness"


1. Hard Process (here tt)

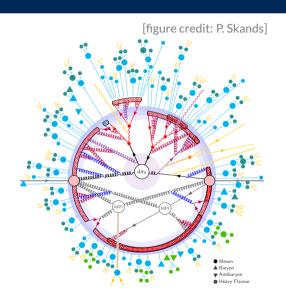

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)
- 3. Matching, Merging and matrix-element corrections

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions



Classify event generation in terms of "hardness"

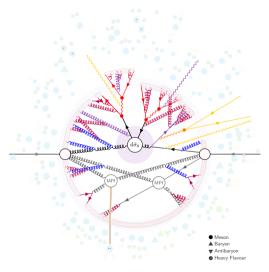

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR, FSR, QED, Weak

[figure credit: P. Skands]

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR, FSR, QED, Weak
- 6. Hadronization, Beam remnants

- 1. Hard Process (here tt)
- 2. Resonance decays (t, Z, ...)
- Matching, Merging and matrix-element corrections
- 4. Multiparton interactions
- 5. Parton showers: ISR, FSR, QED, Weak
- 6. Hadronization, Beam remnants
- 7. Decays, Rescattering

Parton Showers provide leading-log resummation


Dress the partons by generating explicit branchings iteratively

- Start from highly-virtual partons, evolve down to low scales with DGLAP
- Splitting probabilities from

$$\mathrm{d}\mathcal{P}_a(z,Q^2) = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \sum_{b,c} P_{a \to bc}(z) \mathrm{d}z$$

where $P_{a\rightarrow bc}(z)$ splitting kernels

 Different choices in ordering variable and phase-space mapping lead to some differences between different implementations

Improve precision: Matching and merging

Combine multi-jet (fixed-order) calculations with each other and with PS

Matrix element corrections (MECs):

• Correct first PS splitting (2 \rightarrow 2 + 1) with the full matrix element (2 \rightarrow 3)

Matching:

- Combine {n, n + 1}-parton states from NLO ME generator with parton shower
- Exclude overlap by subtraction or by correction factors
- NLO precision for n-parton observables

Merging:

- Combine $\{n, n + 1, ..., n + m\}$ events from ME generators with each other and parton shower
- Overlap removed by applying cuts and vetoes

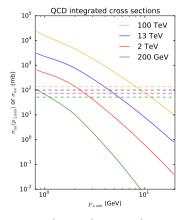
NLO merging:

- As above but with NLO MEs, overlap removed by subtraction
- NLO precision for inclusive (n+i)-parton observables

Multiparton interactions (MPIs)

MPIs from 2 → 2 QCD cross sections

$$\frac{\mathrm{d}\mathcal{P}_{\mathsf{MPI}}}{\mathrm{d}p_{\mathsf{T}}^2} = \frac{1}{\sigma_{\mathsf{nd}}(\sqrt{\mathsf{s}})} \frac{\mathrm{d}\sigma^{2\to2}}{\mathrm{d}p_{\mathsf{T}}^2}$$


 $\sigma_{\rm nd}(\sqrt{s})$ is the non-diffractive cross section

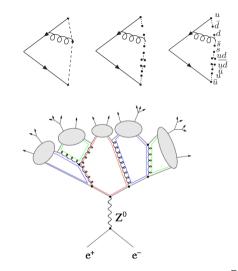
• Partonic cross section diverges at $p_T \rightarrow 0$ \Rightarrow Introduce a screening parameter p_{T0}

$$\frac{\mathsf{d}\sigma^{2\to2}}{\mathsf{d}p_\mathsf{T}^2} \propto \frac{\alpha_\mathsf{s}(p_\mathsf{T}^2)}{p_\mathsf{T}^4} \to \frac{\alpha_\mathsf{s}(p_\mathsf{T0}^2+p_\mathsf{T}^2)}{(p_\mathsf{T0}^2+p_\mathsf{T}^2)^2}$$

• Energy-dependent parametrization: $p_{TO}(\sqrt{s}) = p_{TO}^{ref}(\sqrt{s}/\sqrt{s_{ref}})^{\alpha}$

• Number of interactions: $\langle n \rangle = \sigma_{\text{int}}(p_{\text{T0}})/\sigma_{\text{nd}}$

σ_{int}(p_{T,min}) exceeds σ_{tot}
 ⇒ Several interactions

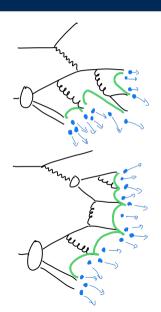

Hadronization models

String hadronization

- Implemented in Pythia, can be interfaced from Sherpa
- Colour string between colour charges, hadrons formed from string breaking

Cluster model

- Implemented in Herwig and Sherpa
- Gluons are forced to make $q\overline{q}$ pairs
- Form colour-singlet clusters, these decay isotropically into hadrons


Electron-hadron collisions

Electroproduction (deep inelastic scattering, DIS)

- Lepton scatters off a parton by exchanging a highly virtual photon
- High virtuality, $Q^2 > a$ few GeV²
- Hard process + Parton showers

Photoproduction (PhP)

- Low virtuality, $Q^2 \rightarrow 0 \text{ GeV}^2$
- Photon may fluctuate into a hadronic state, resolved in the interaction ⇒ MPIs
- Factorize photon flux, evolve γp system
- Also soft QCD processes, diffraction

Electroproduction

Event generation in DIS

Hard scattering


 Convolution between PDFs and matrix element (ME) for partonic scattering

Parton shower

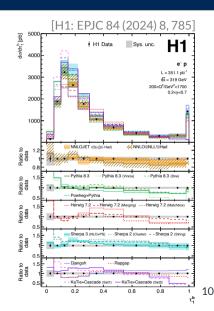
- Final state radiation (FSR)
- Initial state radiation (ISR) for hadron
- QED emissions from leptons

Hadronization

- String/cluster hadronization with colour reconnections
- Decays to stable hadrons

H1 data for 1-jettiness

Pythia


- Default shower with the dipole-recoil option
- Vincia sectorized parton shower
- Dire parton shower

Herwig

- Default angular-ordered shower
- Matching (Matchbox) and merging

Sherpa

- With cluster and string hadronization
- NLO matching

Photoproduction

Photoproduction in electron-proton collisions

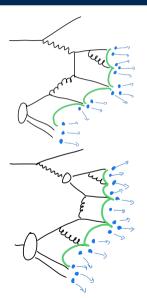
Direct processes

• Convolute photon flux f_{γ} with proton PDFs f_{i}^{p} and $d\hat{\sigma}$

$$\mathrm{d}\sigma^{\mathrm{ep}\to kl+X} = f_{\gamma}^{\mathrm{e}}(x,Q^2) \,\otimes\, f_{i}^{\,\mathrm{p}}(x_{\mathrm{p}},\mu^2) \,\otimes\, \mathrm{d}\hat{\sigma}^{\gamma j\to kl}$$

• Generate FSR and ISR for proton side

Resolved processes

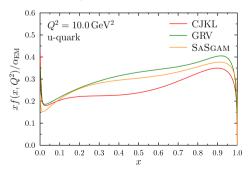

Convolute also with photon PDFs

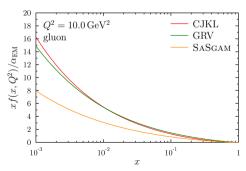
$$\mathrm{d}\sigma^{\mathrm{ep}\to kl+X} = \mathit{f}_{\gamma}^{\mathrm{e}}(x,Q^{2})\otimes\mathit{f}_{i}^{\gamma}(x_{\gamma},\mu^{2})\otimes\mathit{f}_{j}^{\,\mathrm{p}}(x_{\mathrm{p}},\mu^{2})\otimes\mathrm{d}\sigma^{ij\to kl}$$

- Sample x and Q², setup γ p sub-system with $W_{\gamma \mathrm{p}}$
- Evolve γ p as any hadronic collision (including MPIs)

Photon flux from EPA

$$f_{\gamma}^{e}(x, Q^{2}) = \frac{\alpha_{em}}{2\pi} \frac{1}{Q^{2}} \frac{(1 + (1 - x)^{2})}{x}$$

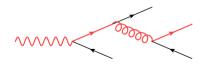

PDFs for resolved photons


DGLAP equation for photons

• Additional term due to $\gamma \to q\bar{q}$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial log(Q^2)} = \frac{\alpha_{em}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z) f_j(x/z,Q^2)$$

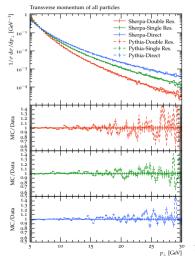
where $P_{i\gamma}(x) = 3(x^2 + (1-x)^2)$ for quarks, 0 for gluons (LO)


Evolution equation and ISR for resolved photons

ISR probability based on DGLAP evolution

• Add a term corresponding to $\gamma \to q\bar{q}$ to (conditional) ISR probability

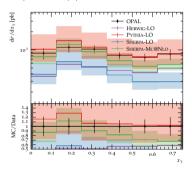
$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_s}{2\pi} \frac{x' f_a^\gamma(x',Q^2)}{x f_b^\gamma(x,Q^2)} P_{a\rightarrow bc}(z) \, \mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{em}}{2\pi} \frac{e_b^2 \, P_{\gamma\rightarrow bc}(x)}{f_b^\gamma(x,Q^2)}$$


- Corresponds to ending up to the beam photon during evolution
 ⇒ Parton originated from the point-like (anomalous) part of the PDFs
 - No further ISR or MPIs below the scale of the splitting
 - Implemented for the default Simple Shower in Pythia 8

[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

Compare different generators for photoproduction

- Good agreement at ME-level
- Differences build up from inputs and modelling
- Scale variations large at LO

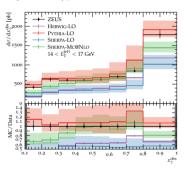


[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

Compare different generators for photoproduction

- Good agreement at ME-level
- Differences build up from inputs and modelling
- Scale variations large at LO

Dijets in $\gamma\gamma$ (LEP)


[OPAL: PLB 651 (2007) 92-101]

[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

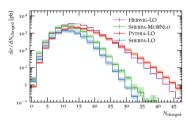
Compare different generators for photoproduction

- Good agreement at ME-level
- Differences build up from inputs and modelling
- Scale variations large at LO

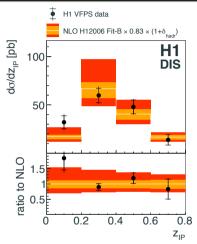
Dijets in γ p (HERA)

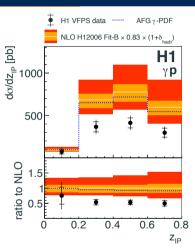
[ZEUS: EPJC 23 (2002) 615-631]

[I. Helenius, P. Meinzinger, S. Plätzer, P. Richardson: arXiv:2406.08026 [hep-ph]]

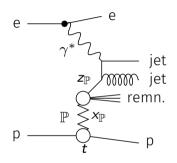

Compare different generators for photoproduction

- Good agreement at ME-level
- Differences build up from inputs and modelling
- Scale variations large at LO


Solid predictions for EIC require


- Validated inputs: (γ) PDFs, accurate flux
- Improved modelling for PS and remnant handling
- Tuning of models to HERA and LEP data

Predictions for multiplicity distributions in EIC


Diffractive processes

- Good agreement between H1 data and NLO calculation in DIS regime (high-Q²)
- NLO overshoot the data in photoproduction (low-Q²)

Hard diffraction in DIS

Diffractive dijets

- Virtual photon interacts with Pomeron from proton producing jets
- Signature: scattered proton or a rapidity gap between proton and Pomeron remnant

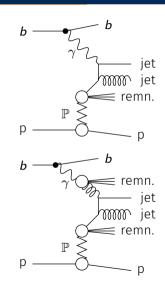
Factorized cross section for diffractive dijets

- DIS: $\mathrm{d}\sigma^{2\mathrm{jets}+X} = f_i^{\mathrm{IP}}(z_{\mathrm{IP}},\mu^2) \otimes f_{\mathrm{IP}}^{\mathrm{p}}(x_{\mathrm{IP}},t) \otimes \mathrm{d}\sigma^{i\mathrm{e}\to2\mathrm{jets}}$ where $f_{\mathrm{IP}}^{\mathrm{p}}$ is Pomeron flux and f_j^{IP} diffractive PDF (dPDF)
- Factorization verifed by H1 and ZEUS at HERA

Hard diffraction in photoproduction

Factorization-based approach

Direct:


$$\mathrm{d}\sigma^{2\mathsf{jets}} \!= f_{\gamma}^{\mathit{b}}(\mathsf{x}) \otimes \mathrm{d}\sigma^{\gamma j \to 2\mathsf{jets}} \otimes f_{j}^{\,\mathsf{P}}(\mathsf{z}_{\mathbb{P}}, \mu^{2}) \otimes f_{\mathbb{P}}^{\,\mathsf{p}}(\mathsf{x}_{\mathbb{P}}, t)$$

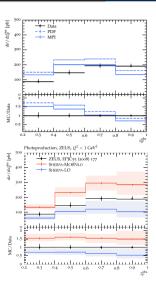
Resolved:

$$\mathrm{d}\sigma^{2\mathrm{jets}} \!= \! f_{\gamma}^{\,b}\!(x) \otimes f_{i}^{\,\gamma}\!\left(x_{\gamma},\mu^{2}\right) \otimes \mathrm{d}\sigma^{ij \to 2\mathrm{jets}} \otimes f_{j}^{\,p}\!\left(z_{\mathbb{P}},\mu^{2}\right) \otimes f_{\mathbb{P}}^{\,p}\!\left(x_{\mathbb{P}},t\right)$$

Factorization breaking

- Suppression wrt. factorized approach around 10%–50% at HERA
- Even larger effects seen in pp (and pp̄)
- Potential explanation additional interactions between photon remnants and the proton covering the rapidity gap

Hard diffraction in photoproduction


Pythia [I.H., C. O. Rasmussen, EPJC (2019) 79:413]

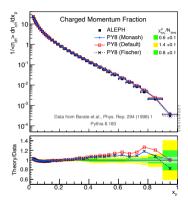
- Based on diffractive PDFs at LO
- Factorization breaking effects with dynamical rapidity gap survival with MPI rejection
- ⇒ Suppression in line with the HERA data

Sherpa [F. Krauss, P. Meinzinger, EPJC 84 (2024) 9, 894]

- Both LO and NLO available
- NLO tend to overshoot the data
- Factorization breaking effects studies by scaling resolved and direct components

Three Rivet routines available (2 for H1, 1 ZEUS)

Tuning

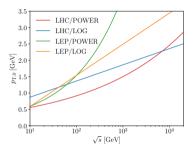

MC tuning

Need for tuning

- Modelling complete collision events require phenomenological models
- These involve parameters that have to fixed using experimental data
- Should be "global" to retain predictability of a given model (eg. energy dependence)

Tools for automated tuning

- Rivet provides easy comparison between data and simulations
- Professor 2 provides Rivet-based framework to optimize parameters by minimizing χ^2

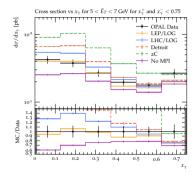


[P. Skands, S. Carrazza, J. Rojo, EPJC 74(8), 3024 (2014)]

[J.M. Butterworth, I. H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

Systematic comparisons of existing MPI tunes

- Vary $p_{T,0}$ parametrization
- pp at LHC and Tevatron and for $\gamma\gamma$ from LEP
- Data for jet and charged-particle production for pp, γ p and $\gamma\gamma$ (10 data sets in total)


[J.M. Butterworth, I. H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

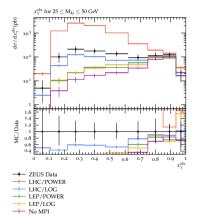
Systematic comparisons of existing MPI tunes

- Vary $p_{T,0}$ parametrization
- pp at LHC and Tevatron and for $\gamma\gamma$ from LEP
- Data for jet and charged-particle production for pp, γ p and $\gamma\gamma$ (10 data sets in total)

Conclusions

• Can find good agreement for $\gamma\gamma$

[OPAL: EPJC 31, 307 (2003)]


[J.M. Butterworth, I. H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

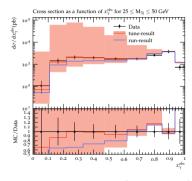
Systematic comparisons of existing MPI tunes

- Vary $p_{T,0}$ parametrization
- pp at LHC and Tevatron and for $\gamma\gamma$ from LEP
- Data for jet and charged-particle production for pp, γ p and $\gamma\gamma$ (10 data sets in total)

Conclusions

• Can find good agreement for $\gamma\gamma$ and γp

[ZEUS: NPB 792 1 (2008)]


[J.M. Butterworth, I. H., J.J. Juan Castella, B. Pattengale, S. Sanjrani, M. Wing: SciPost Phys. 17 (2024) 6, 158]

Systematic comparisons of existing MPI tunes

- Vary $p_{T,0}$ parametrization
- pp at LHC and Tevatron and for $\gamma\gamma$ from LEP
- Data for jet and charged-particle production for pp, γ p and $\gamma\gamma$ (10 data sets in total)

Conclusions

- Can find good agreement for $\gamma\gamma$ and γp
- Published new Rivet analyses enabling dedicated tunes for each beam configuration
- Automatized parameter optimization with Professor 2

[In progress]

MC4EIC recap

MC4EIC

- Monte Carlo event generators required for detector planning and analysis
- Follow up MC development relevant to EIC with MC working group in the EICUG

Previous workshops, following MCEGs in 2018 and 2019

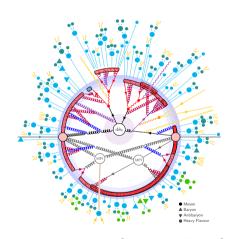
- MC4EIC 2021, Remote, hosted by CFNS
 - Kick of to review experimental needs for theory and event generators
- MC4EIC 2022, Remote, hosted by BNL
 - Reports from MC developers and experimentalists, live notes
- MC4EIC 2024, In-person meeting in Durham
 - Reports from general purpose and specialized event generators
 - Reviews on the existing data relevant to validation
- MC4EIC 2025, Hybrid in JLab (connected to EICUG meeting the following week)
 - Overview talks and generator updates, focus on Rivet and validation
 - Draft a report from the validation efforts

MC4EIC

- Monte Carlo event generators required for detector planning and analysis
- Follow up MC development relevant to EIC with MC working group in the EICUG

Previous workshops, following MCEGs in 2018 and 2019

- MC4EIC 2021, Remote, hosted by CFNS
 - Kick of to review experimental needs for theory and event generators
- MC4EIC 2022, Remote, hosted by BNL
 - Reports from MC developers and experimentalists, live notes
- MC4EIC 2024, In-person meeting in Durham
 - Reports from general purpose and specialized event generators
 - Reviews on the existing data relevant to validation
- MC4EIC 2025, Hybrid in JLab (connected to EICUG meeting the following week)
 - Overview talks and generator updates, focus on Rivet and validation
 - Draft a report from the validation efforts


Summary & Outlook

Many recent developments in different areas relevant for EIC

- Extend capabilities for different processes in event generators
- Precision improvements with matching and merging
- First validation and tuning efforts completed/ongoing

Things to work on

- Radiative effects, nuclear targets, diffraction
- What else? How to communicate experimental needs? Rivet analyses?

[figure by P. Skands]