

Computer vision for data quality monitoring

hydrateam@jlab.org

Hydra: 10,000 ft view

Monitoring Workflow

Python based modules responsible for managing images, classification, and performing actions (alarming, logging, etc)

Back End

Comprehensive MySQL database serves as communication and storage between system and front end

Front End

Web pages provide users with actionable insight *from anywhere* without requiring technical knowledge of the system or Al

Summary Statistics

online

	Hall A	Hall B	Hall C	Hall D	mini-Hydra (GlueX)	mini-Hydra (Hall C)	ePIC
Labeled Images	5,440	237,825	362	140,517	350,683	144,392**	340,644**
Plot Types	42	73	16	15	46	39	568
Active Models	0	41	0	6	_	_	_
Batch / frequency	_	73 / 3-5min		15 / min	_	_	_
Runs with 1 bad image	_	1,019	_	1,035	_	_	_
Total analyzed	_	1,199,771	-	1,101,160*	_	-	_

offline

*since record keeping began

** Hydra is just tracking these images

Labeling Statistics

237,825 total labeled images

Labeled Percentage by Detector 100 80 Labeled Percentage (%) 60 40 20 0 BST BMT CND CTOF HEL LTCC RF **RICH** TimeJitter DC ECAL FTOF HTCC Detector

% labeled chunked images per plot type

Hydra has a separate instance of mon12 that produces images every 3-5 minutes.

Label Distribution by Percentage of Labeled Plots (Stacked)

Label distribution by plot type

We typically have a large class imbalance. We mitigate this by difference sampling methods used in training models.

Performance Metrics

Aggregated metrics for each subsystem *for currently labeled* **Bad images**

- Accuracy = (TP + FN) / (TP + FP + FN + TN)
 - Recall = TP / (TP + FN)
- Precision = TP / (TP + FP)
- F1 Score = 2 x (Precision x Recall) / (Precision + Recall)

Why do we want all the labels all the time?

Performance metrics

We want to measure and track the accuracy of models over time

How accurate are these models? cannot calculate accuracy on new images without your labels.

Interpretability

Heat maps are usually easier to interpret when models are well trained

Localized heat maps can help us determine what the model is learning.

Continual Learning

With frequent labeling, we can track a running accuracy and trigger on retraining or other corrective actions.

This is valuable especially when our monitoring images change with new experiments and/or configurations.

How are images sent to the labeler?

Randomly sample

A very small sample of images are randomly selected for labeling.

All bad

All bad images are sent to the labeler for human confirmation.

Better models send less images to the labeler!

All unconfirmed

If Hydra is not sure (output weight below threshold) about an image, it will be sent for labeling.

Performance improvement with frequent labeling

In general, training set size increases with increasing Model ID

F1 Score = 2 x (Precision x Recall) / (Precision + Recall)

Images with no Bad labels

If there are no examples of a "Bad" image, we drop that classification in training. This means the specific model will not be able to say an image is bad when we are running.

Affected Plot Types:

CTOF_tdc, FTOF_adcEnergy s1, s2, s5 FTOF_adcTime s1, s2, s5 FTOF tdc s1, s2 ECAL_tdc_s2, HTCC_adcEnergy

We can simulate bad plots to use in training.

We redesigned the web interface.

All details about the user interface and experience would be a complete separate talk, so this is just a highlight.

GradCAM Heat Maps

"Why did Hydra say this was bad?"

Bright spots indicate important regions of the image for the given classification.

These are very sensitive to how well the model is trained.

Heat maps are produced from mixed layers in InceptionV3+CBAM

Image Labeler

Efficiently label thousands of images used for training a model.

Run

See predictions in near real-time. This page continuously updates with new images during an experiment.

Grafana

Displays all predictions over time. Trend analysis on predictions can indicate when it is time to retrain a model.

\varTheta HYDRA

Log

Displays problematic and potentially problematic images from a trailing 24 hour window.

Library

Contains information useful to evaluate a given model's training and performance.

Status

Primarily used by administrators to monitor system performance.

Conclusions

Please label!

Use shift + click to label multiple images at once If you have questions on how to use the labeler, we can schedule a demo for you.

Models will be retrained before the run starts.

Training reports will be sent out, performance will be monitored.

New UI will be released soon.

If you would like to test it out, give feedback, criticize, whatever, please let us know!

extras

Hydra team

David Lawrence

EPSCI Physics, CS, AI/ML

Thomas Britton

EPSCI Physics, CS, AI/ML

Darren Upton

ODU Physics Grad Student Hall B Service Work

Torri Jeske

EPSCI Physics, CS, AI/ML

Nataliia Matsiuk

Information + Records Containerization, QA

Raiqa Rasool

EPSCI CS, Full Stack Development

Jordan O'Kronley

UT Physics Graduate Student Just started

Aggregated metrics by Class (Good and NoData)

These are obtained from the set of labeled images for a given detector system.

Performance metrics by Plot Type for Bad Class

Plot Type

Performance metrics by Plot Type for Good Class

LTCC_adc FTOF_misc_s4 BST_multiplicity BMT_cOccupancy BMT_cOccupancy BMT_coccupancy BMT_multiplicity CCCL_adcEnergy_s1 ECAL_adcEnergy_s2 DC_tdc1d_s3 DC_tdc1d_s3 DC_tdc1d_s5 DC_tdc1d_s5 DC_tdc1d_s5 DC_tdc1d_s5 DC_tdc1d_s5 DC_tdc1d_s5 BST_hits1d CTOF_adc RICH_s1 RICH_s1 RICH_s3 FTOF_tdc_s3 FTOF_tdc_s5 FTOF_tdc_s6 FTOF_tdc_s6

										-															3			
																					2							
		<u>.</u>		<u> </u>	<u> </u>																		·:	î	A			-
																												•
FTOF tdc s4	TimeJitter_phase	RF_adc	RF_tdc	RF_time	FTOF_adcEnergy_s3	FTOF_adcEnergy_s4	HEL_signals	FTOF adcTime s3	LTCC_adcTime	ECAL_adcTime_s3	FTOF_adcTime_s4	BST_hits2d	FTOF_adcTime_s6	ECAL_tdcOccupancy	HEL_board	FTOF_tdcOccupancy	ECAL_adcEnergy_s3	ECAL_tdc_s3	FTOF_adcOccupancy	RICH_occupancy2d	ECAL_adcOccupancy	FTTRK_tmax	FTTRK_occupancy2d	FTTRK_occupancy1d	FITRK adc	FTCAL_adc	RASTER Rloccupancy	

Plot Type

Performance metrics by Plot Type for NoData Class

BMT_cOccupancy BMT_multiplicity ECAL_adcEnergy_s1 ECAL_adcEnergy_s2 FTOF_misc_s3 BST_hits1d DC_tdc1d_s3 DC_tdc1d_s4 DC_tdc1d_s1 DC_tdc1d_s6 DC_tdc1d_s5 DC_tdc1d_s5 DC_tdc1d_s5 FTOF_adcOccupancy RICH_occupancy2d ECAL_adcOccupancy CTOF_tdc FTOF_tdc_s3 RF_adc RF_tdc RF_time RICH_s1 adc RICH_s4 adc signals 45 _board adc 24 imeJitter_phase LTCC_adcTime 4 S6 FTTRK_adc FTOF_misc_s4 BST_multiplicity FTOF_tdc_s6 FTOF_tdc_s5 ß K_occupancy2d occupancy1d _adcEnergy_s3 BST_hits2d tdcOccupancy adcEnergy_s3 FTTRK_tmax R1occupanc) AL_adcTime_s3 tdcOccupancy S _adcTime_ adcTime tdc adcTime ECAL tdc adcEnergy_ CTOF LICC FTCAL FTOF HEL HEL OF OF OF α \mathbf{Y} FTOF. FTOF ECAL FITR RASTEI Ь 잂 庄