

Near-threshold photoproduction of J/ ψ on the proton with CLASI2

Pierre Chatagnon (DPhN, CEA Saclay) CLAS Collaboration Meeting 5th of March 2024

Analysis note

- The following material is extracted from the note of this analysis.
- With contributions from Stepan, Mariana, Richard and myself.
- Under review since the 18th of February.

2	Measurement of the cross-section of the photoproduction of the
_з Ј	$/\psi$ meson near the production threshold with the CLAS12 detector
4	Pierre Chatagnon ¹ *,
	Stepan Stepanyan ² ,
	Mariana Tenorio-Pita ³ ,
	Richard Tyson ²
5	¹ Irfu/DPhN, CEA, F91191 Gif-sur-Yvette, France
6	² Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
7	³ Old Dominion University, Norfolk, Virginia
8	February 18, 2025
9	Abstract
10	This analysis note details the steps performed to extract the total and differential cross-section
11	of the photoproduction of ${\rm J}/\psi$ near the production threshold. The data used for this analysis were
12	taken in 2018 and 2019, with a 10.6 and 10.2 GeV electron beam scattering on a liquid hydrogen
13	as well as the interpretation of these data in terms of gluonic content of the proton.

Motivations

Near-threshold photoproduction of the J/ ψ meson

Quasi-photoproduction of J/ψ

$$ep \to (e')\gamma p \to (X)J/\psi \ p' \to (X)e^+e^-p'$$

Near-threshold photoproduction of the J/ ψ meson

... one big caveat: the coupled channels and pentaquarks

- The previous considerations rely on the application of Vector Meson Dominance.
- The contribution from open-charm meson channels and potential pentaquark must understood or ruled-out. → Total cross-section as a

Previous results from JLab

Data, MC & analysis tools

Data and MC samples

- Analysis on Pass 2 data. All *main* Fall 18 (Inbending and outbending) and Spring 19 runs are processed.
- Simulations are processed through OSG with pass 2 configuration.
- The <u>QADB tool</u> is used to clean-up data and retrieve the accumulated charge per DST files.
- The <u>RCDB interface of clas 12root</u> is used to retrieve the beam current for each run.
- Accumulated charge is computed per beam current for each configuration.

	Config / Beam currents / Charge							
		Fall 18 In.		Fall 18	3 Out.	Sp. 19		
Generator	45 nA 26.312 mC	50 nA 4.000 mC	55 nA 5.355 mC	40 nA 11.831 mC	50 nA 20.620 mC	50 nA 45.994 mC		
Grape	8.2M each							
TCSGen	2M each							
JPsiGen	JPsiGen 2M each							
JPsiGen (No rad.) 3M each								
Total of 24 MC samples and 3 Data samples								

Event selection

Summary of the analysis tools

- Fiducial cuts + dead paddle cuts,
- Proton energy loss correction,
- Lepton momentum correction,
- Radiated photon correction,
- BDT-based PID for the leptons above 4.5 GeV (see <u>Mariana's note</u>)

Cross-section computation

- Presentation at the March 2024 Collaboration Meeting
- Presentation at the RGA meeting (9/11/2024)

class cea

Detection efficiency

- 1) From the data fit the number of J/ψ in the data (N_{data}) and a background function is extracted
- 2) BG events are generated according to this background function and added to αN_{data} random MC J/ ψ events.
- 3) The obtained distribution is fitted with the same function as the data
- 4) The detection efficiency is then:

$$\epsilon_{j} = \frac{N_{Fit/MC}\big|_{j}}{\alpha \cdot N_{Fit/Data}\big|_{j}} \frac{N_{REC/MC}\big|_{j}}{N_{GEN+RAD/MC}\big|_{j}}$$

Radiative effects and correction

$$\sigma_j = \frac{N_{J/\psi j}}{\mathcal{F}_j \cdot \mathcal{L} \cdot \omega_{cj} \cdot B_r \cdot \epsilon_j \epsilon_{Rad/j}}$$

- Radiative corrections for BH: <u>Matthias Heller et al. Soft-photon</u> corrections to the bethe-heitler process in the $yp \rightarrow l+l-p$ reaction. PRD
- Radiative effects for J/ψ: <u>F. Ehlotzky and H.Mitter, Radiative corrections to</u> the leptonic decay modes of the neutral vector mesons, Nuovo Cim., 55A: 181-92,1968
 - \rightarrow Cross-check using <u>Photos</u>

- The JpsiGen, TCSGen generator with radiative effect are on Github, as well as an event converter for Grape.
- A full note on this algorithm is included in the analysis note.
- The <u>work</u> on the BH radiative corrections was presented at the CLAS collaboration meeting in July 23.

15/30

Normalization factor (2nd method)

Results & interpretation

Kinematic coverage and binning

Near-threshold photoproduction of J/ψ on tl

<u>cea</u>

18/30

Integrated cross-section

Systematics

Variation	$Q^2 \; [\text{GeV}^2]$	$MM^2 \; [{\rm GeV^2}]$	Fit function	AI PID	Prot. PID	Lepton mom. [GeV]
Standard	0.5	0.4	Gauss + Int.	0.0	No cuts	1.7
Down	0.2	0.2	CB + int.	-0.05	2σ	1.5
Up	0.8	0.8	Gauss + Pol.2	0.05	3σ	1.9

Variation	Norm.	Accumulated charge	Radiative correction
Standard	Mixed BG	Upper bound from inclusive	-
Alternative	Single particle eff.	CS analysis: 1.2%	-

cea

Differential cross-section binning

	$E_{\gamma} \in [8.2, 9.28] \text{ GeV}$	/ Bin	1	2	3	4	5			
	$-t \min [\text{GeV}^2]$		0.77	1.00	1.5	2.0	2.5			
	$-t \max [\text{GeV}^2]$]	1.00	1.5	2.0	2.5	4.5			
$E_{\gamma} \in [9.$	28, 10.00] GeV / Bin	1	2	3	4	5	6	7	8	9
	$t \min$. [GeV ²]	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.5	3.0
_	$t \max [\text{GeV}^2]$	0.75	1.0	1.25	1.5	1.75	2.0	2.5	3.0	6.0

$E_{\gamma} \in [10.00, 10.6] \text{ GeV / Bin}$	1	2	3	4	5	6	7
$-t \min [\text{GeV}^2]$	0.5	0.7	0.9	1.1	1.3	1.6	2.0
-t max. [GeV ²]	0.7	0.9	1.1	1.3	1.6	2.0	4.5

- Limits set to have similar number of J/ψ per bin.
- Bin volume correction implemented for bins close to the t_{min/max} boundaries.

Differential cross-section binning

Near-threshold photoproduction of J/ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

Differential cross-section results

Dipole fit and interpretation in term of mass radius

Exponential fit

GFF extraction with **CLASI2** data

Model dependent extraction of GFFs

• Holographic QCD model

$$d\sigma = t \sigma^2 = [A(t) + n^2 D(t)]^2 = \hat{\sigma}^2$$

$$\frac{d\sigma}{dt} = \mathcal{N}^2 \frac{e^2}{64\pi (s - M_N^2)^2} \frac{[A(t) + \eta^- D(t)]^-}{A^2(0)} \cdot F(s) \cdot 8$$

 J/ψ near threshold in holographic QCD: A and D gravitational form factors, Kiminad A. Mamo and Ismail Zahed, Phys. Rev. D 106, 086004,2022

Generalized Parton Distribution model

$$\frac{d\sigma}{dt} = \frac{\alpha_{EM} e_Q^2}{4(W^2 - M_N^2)^2} \frac{(16\pi\alpha_S)^2}{3M_V^3} |\phi_{NR}(0)|^2 |G(t,\xi)|^2$$

Cut at $\xi < 0.4$ applied

 $A(t) = \frac{A(0)}{(1 - \frac{t}{m_A^2})^3}$

Yuxun Guo, Xiangdong Ji, Yizhuang Liu, and Jinghong Yang. Updated analysis of near-threshold heavy quarkonium production for probe of proton's gluonic gravitational form factors. Phys. Rev.D, 108(3):034003, 2023

$$C(t) = \frac{1}{4}D(t) = \frac{C(0)}{(1 - \frac{t}{m_C^2})^3}$$

Near-threshold photoproduction of J/
$$\psi$$
 on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

Fixed parameters

Model / Dataset	A(0)	$m_C \; [\text{GeV}]$
GPD / Hall B	0.414 ± 0.008	$0.91{\pm}0.10$
GPD / All data	0.414 ± 0.008	-
Holographic / Hall B	0.414 ± 0.008	1.12 ± 0.21
Holographic / All data	0.414 ± 0.008	-

• Duran, B., Meziani, ZE., Joosten, S. *et al.* Determining the gluonic gravitational form factors of the proton. *Nature* 615, 813–816 (2023)

- Yuxun Guo, Xiangdong Ji, Yizhuang Liu, and Jinghong Yang. Updated analysis of nearthreshold heavy quarkonium production for probe of proton's gluonic gravitational form factors. Phys. Rev.D, 108(3):034003, 2023
- Tie-Jiun Hou et al. New CTEQ global analysis of quantum chromodynamics with highprecision data from the LHC. Phys. Rev. D, 103(1):014013, 2021

Toward GFF extraction including CLASI2 data

cea

GFF using CLASI2 data, and all available data

• Use the tripole ansatz for the GFFs:

$$C(t) = \frac{1}{4}D(t) = \frac{C(0)}{(1 - \frac{t}{m_C^2})^3}$$
$$A(t) = \frac{A(0)}{(1 - \frac{t}{m_A^2})^3}$$

- Error bars include correlations between fitted variables.
- Inclusion of Hall D data in the fit lead to flatter t-dependance of D.

Mass and scalar radii

- From the GFFs, one can extract:
 - the gluon mass radius

$$\begin{split} \langle r_m^2 \rangle_g &= 6 \frac{1}{A_g(0)} \frac{dA_g(t)}{dt} \bigg|_{t=0} - 6 \frac{1}{A_g(0)} \frac{C_g(0)}{M_N^2} \\ &= \frac{18}{m_A^2} - 6 \frac{1}{A_g(0)} \frac{C_g(0)}{M_N^2} \end{split}$$

 and the gluon scalar radius of the proton

$$\begin{split} \langle r_s^2 \rangle_g &= 6 \frac{1}{A_g(0)} \frac{dA_g(t)}{dt} \bigg|_{t=0} - 18 \frac{1}{A_g(0)} \frac{C_g(0)}{M_N^2} \\ &= \frac{18}{m_A^2} - 18 \frac{1}{A_g(0)} \frac{C_g(0)}{M_N^2} \end{split}$$

Pressure distributions

• From the Fourier transform of the D GFF...

$$\tilde{D}(r) = \int \frac{d^3 \Delta}{(2\pi)^3} e^{-i\Delta \cdot r} D(\Delta, m_C)$$
$$= D(0) \frac{m_C^3}{32\pi} (1 + m_C r) e^{-m_C r}$$

• ... it is possible to derive transverse and shear pressure profiles:

$$r^{2}p(r) = \frac{1}{6m_{N}} \frac{d}{dr} \left(r^{2} \frac{d}{dr} \tilde{D}(r) \right)$$
$$= \frac{1}{6m_{p}} \frac{4C(0)m_{C}^{5}}{32\pi} r^{2}(m_{C}r - 3)e^{-m_{C}r}$$

$$s(r) = -\frac{1}{4m_N} r \frac{1}{dr} \left(\frac{-\pi}{r} \frac{D(r)}{dr} \right)$$
$$= -\frac{1}{4m_p} \frac{4C(0)m_C^6}{32\pi} r^3 e^{-m_C r}$$

Take-aways and path going forward

- The total and differential cross-section of the near threshold photoproduction of J/ ψ has been measured with RG-A data.
- An interpretation of these data only, and combined with existing data has been done in terms of GFFs.

- The analysis is under review.
- An article (PLB or PRC) is being drafted.

Near-threshold photoproduction of J/ ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

31/30

Data/MC normalization

• Each event is weighted by:

$$\omega = rac{\mathcal{L} \cdot \sigma_{tot}}{nb_{GEN}}$$
 for generator providing integrated CS,

• Where the luminosity is obtained from target specification:

$$\mathcal{L} = \frac{l \cdot \rho \cdot N_A \cdot C \cdot Q}{e} = 1316.875 \cdot Q(\text{in mC})$$

$$\omega = rac{\mathcal{L} \cdot w_{GEN}}{nb_{GEN}}$$
 for weighted generator.

Length of the target I = 5 cmDensity of the target $\rho = 0.07 \text{ g/cm}^3$ Avogadro constant $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Unit charge $e = 1.6 \times 10^{-19} \text{ C}$ Conversion to pb $C = 10^{-36}$

https://clasweb.jlab.org/rungroups/tlc/wiki/images/e/e7/Normalization_MC_Data-5.pdf

Lepton ID at high momenta

- Used BDT approach for leptons PID at high momenta > 4.5 GeV
- Similar approach as for the TCS analysis of 2020
- One BDT per particle per era (6 BDT in total).
- Used kinematic variables, and high-level calorimeter variables.
- Trained on MC, validated on MC and data.

Near-threshold photoproduction of J/ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

Figures from M. Tenorio

Lepton ID at high momenta

 $ep \rightarrow e^- e^+_{m^+_{\pi}}(n)$ F18in_positives F18out_positives 1- False Positives Rate 1- False Positives Rate 0.95 0.95 0.9 0.9 0.85 0.85 **BDT 6 variables Simulations BDT 6 variables Simulations BDT 6 variables Data BDT 6 variables Data** 0.8 0.8 **BDT 9 variables Simulations BDT 9 variables Simulations BDT 9 variables Data** BDT 9 variables Data 0.75 0.75 0.95 0.75 0.8 0.85 0.9 0.95 0.8 0.85 0.9 **True Positives Rate True Positives Rate** $e^+ \rightarrow e^+ \gamma$ This work has a dedicated analysis note and is implemented in Iguana

Near-threshold photoproduction of J/ ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

Cez

Figures from M. Tenorio

Bin volume correctior

Photon energy resolutions

(a) Resolution of the initial photon energy for the Fall 2018 inbending configuration.

(b) Resolution of the initial photon energy for the Fall 2018 outbending configuration.

Integrated differential CS

Near-threshold photoproduction of J/ψ on the proton with CLASI2 – Pierre Chatagnon – 5th of March 2025

cea

Lepton momentum corrections

ΔP/P

Near-threshold photoproduction of J/ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

38/30

Fiducial cuts/dead paddle cuts

- Pass I fiducial cuts on the PCAL (~ 8-9cm on V and W)
- Additional dead paddle cut, cross-check with Valerii Klimenko

Radiated photon correction

- Loop over photons in the event
- Add 4-vectors to the lepton if $\Delta \theta < 1.5$ deg.

Plots from M. Tenorio

Proton energy loss

Number of J/Psi

- All data samples are combined and **fitted together.**
- Gaussian + exponential background fit is used.
- Systematic study is performed on the fit function.

t Number of J/ψ	(pb ⁻¹)
2270	320
~2K	
707	114
	C Number of J/ψ 2270 ' ~2K 707

- I) Real and virtual flux are provided event by event by the <u>PsiGen Generator</u>.
- 2) The integral over the range of energy of the bin j is done using the integral/mean theorem:

$$\mathcal{F}_{c/j} = \int_{j} \mathcal{F}_{c} dE = \Delta E \frac{\sum_{i=1}^{N} \mathcal{F}_{c}(E_{GEN/i}) \cdot \omega_{i}}{\sum_{i=1}^{N} \omega_{i}}$$

3) Each flux (one per configuration) is multiplied by the corresponding accumulated charge:

$$\mathcal{F}_j = \sum_c C_c \cdot \mathcal{F}_{c/j}$$

Total number of photon in the bin j in unit of e

4) The results is multiplied by the luminosity factor to recover the correct normalizing factor:

$$\mathcal{L} = \frac{l \cdot \rho \cdot N_A \cdot C}{e}$$

Near-threshold photoproduction of J/ ψ on the proton with CLAS12 – Pierre Chatagnon – 5th of March 2025

Photon Flux vs Photon Energy

Normalization factor

I) Event mixing procedure from data :

- Randomly select electron, positron, proton (from different events)
- Construct kinematics and make sure they are within the region of interest:

(M_{ee}>2 GeV, |MM|²<0.4 GeV², Q²<2 GeV²)

- 2) Reweight events to match data in the training region, using a BDT-based method from <u>Alex</u> <u>Rogozhnikov 2016 J. Phys.: Conf. Ser. **762**</u> <u>012036</u>. Code available <u>here</u>.
- 3) Validate the weights on the validation region.
- Apply weights on the signal region and obtained BG-subtracted yields

- The initial electron beam can also radiate a photon **before** emitting the real hard photon responsible for the J/ ψ photoproduction.
- ISR are included in the BH MC sample.
- Using GRAPE, which include the ISR, only events in the J/ ψ region, we quantified the effect of ISR on the number of photon emitted.

