

Neutron DVCS Cross Section Extraction at the CLAS12 Experiment

Li XU

CLAS Collaboration Meeting

Mar 5, 2025

Outline

- Motivation
- Data and MC samples
- PID and fiducial cuts
- Select neutron DVCS (nDVCS) data
- Study of π^0 production contamination
- Beam-spin asymmetry as a check
- Acceptance-corrected yields
- Summary and next to do

Motivation

- The study of multi-dimensional partonic structure of nucleons can provide important information to probe non-perturbative QCD
- Generalized Parton Distributions (GPDs) relate transverse position of partons to longitudinal momentum
- The Deeply Virtual Compton Scattering (DVCS) is one of the cleanest channels to access GPDs
- The measurement of DVCS cross-section from the neutron can provide unique information on GPDs

Data and MC samples

• Data

- RGB data, collected in 2019 spring and 2020 spring (inbending)
- 10.6/10.4/10.2 GeV electron beam
 - With an average polarization of 86%
 - Scattering off an unpolarized liquid deuterium target of 5 cm length

• MC

- Generator: genepi
- 90M DVCS events
 - 30M for each beam energy
 - nDVCS: 21M events
 - pDVCS: 69M events

PID and fiducial cuts

5

Select nDVCS data

- Select events with at least one electron, one neutron and one photon
 - For cases with more than one combination, select the one with the smallest χ^2 -like quantity (defined using exclusivity variables that peak at zero)
- Reaction kinematics: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, $t > -1.9 \text{ GeV}^2$
- Apply pre-selection on missing m_X^2 and p_X of $ed \rightarrow en\gamma X$
 - To reduce events from other channels mostly
 - Pre-selection: $-0.5 < m_X^2 < 3 \text{ GeV}^2$, $0 < p_X < 1.5 \text{ GeV}$

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FT (n in CD & γ in FT)

- After the exclusivity selection
 - $N = 3.52 \times 10^5$ for CD&FT
 - $N = 0.74 \times 10^5$ for CD&FD

- $|\Delta \phi| < 1.8^{\circ}$
- $-0.5 < \Delta t < 0.8 \text{ GeV}^2$
- $-0.31 < m_X^2 < 0.16 \text{ GeV}^2$ for $en \rightarrow en\gamma X$
- $-3.7 < m_X^2 < 3.1 \text{ GeV}^2$ for $en \rightarrow enX$
- $\theta_{X\gamma} < 3.7^{\circ}$ for $en \rightarrow enX$
- $0.1 < m_X^2 < 2.2 \text{ GeV}^2$ for $ed \rightarrow en\gamma X$
- $p_X < 0.8 \text{ GeV for } ed \rightarrow en\gamma X$
- The distributions for other variables and for CD&FD are presented in backup slides

- $\Delta \phi$: difference in ϕ between
 - hadronic plane formed by the neutron and the virtual photon
 - hadronic plane formed by the neutron and the outgoing photon
- Δt : difference in *t* between
 - *t* calculated by the neutron
 - *t* calculated by the photon
- $\theta_{X\gamma}$: cone angle formed by the missing photon X ($en \rightarrow enX$) and the outgoing photon γ

Proton misidentified as neutron in CD

- The tracking system (CVT) in CD has dead or low-efficiency regions
- Protons: no tracks in CVT but hits in central neutron detector (CND)
 Misidentified as neutrons
- Reproduce distributions in MC mixing pDVCS and nDVCS (both reconstructed as nDVCS)

TMVA training

- Training and test sample:
 - MC with pure neutron target
 - MC with pure proton target
- Training variables (only use info at CTOF, CVT and CND)
 - Number of clusters at CTOF (most distinguishable)
 - Smallest cone angle between the CTOF cluster and n(p) track
 - Number of tracks at CVT
 - Smallest cone angle between the CVT track and n(p) track
 - Number of hits for the n(p) cluster at CTOF and three layers of CND (in backup slides)
 - Deposit energy at CTOF and three layers of CND (in backup slides)

Boosted Decision Tree (BDT) classifier

- Selection:
 - BDT response > 0.05 (to be tuned)
- $N = 4.26 \times 10^5$ for n in CD (CD&FT + CD&FD)
- $N = 1.21 \times 10^5$ after the BDT response selection

• Apply a further cut

 $p_X < 0.3 \text{ GeV for } ed \rightarrow en\gamma X$

• For nDVCS, the spectator has low momentum

- π^0 production contamination:
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - π^0 MC: reconstructed as nDVCS

• Distributions for data are consistent with nDVCS MC

- π^0 production contamination:
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - π^0 MC: reconstructed as nDVCS

- After the cut $p_X < 0.3 \text{ GeV}$ for $ed \rightarrow en\gamma X$
- The difference between data and MC for nDVCS might be also due to their different resolution
- The momentum correction is under study

Study of π^0 production contamination

• $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$ background subtraction: Partially reconstructed $en\pi^0(1\gamma)$ • $N_{\text{DVCS}} = N_{\text{en}\gamma} - N_{en\pi^0} \times f^{\text{MC}} = N_{\text{en}\gamma} - N_{en\pi^0} \times \frac{N_{en\pi^0(1\gamma)}^{\text{MC}}}{N_{en\pi^0(2\gamma)}^{\text{MC}}}$ and passed DVCS selection passed π^0 production selection • Select π^0 production data • Select events with at least $1 e^{-}$, 1 n and 2γ • CD&2FD: n in CD and 2 γ in FD • $p_e > 1 \text{ GeV}, p_n > 0.3 \text{ GeV}, p_{\nu} > 0.3 \text{ GeV}$ • $0.10 < m_{\gamma\gamma} < 0.17 \text{ GeV}$ Events ents CD&2FD — MC (scaled) ----- Response > 0.05 • Exclusivity cuts (in backup — Data slides) BDT response cut to reduce • **BD1** 1.5 E misidentified protons 0.5E \blacktriangleright Using events for *n* in CD to perform the subtraction -2-5 Ω 5 0 2 $\Delta \phi$ [°] $\Delta \phi$ [°] $\gg N_{\text{DVCS}} = 46.6 \text{ k} - 20.4 \text{ k} \times 5.0/40.0 = 44.0 \text{ k}$ $\succ \pi^0$ contamination: 5.5%

Beam-spin asymmetry as a check

$$BSA = \frac{1}{P} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- *P* is the average beam polarization
- N^+ is the nDVCS yield for positive helicity
- N^- is the nDVCS yield for negative helicity
- Extract BSA using nDVCS events
 - only for *n* in CD
 - after the BDT response selection
 - subtract π^0 production contamination in each ϕ bin
- The BSA has the expected sinusoidal shape, and its amplitude is on the order of a few percent
 - consistent with the recent CLAS12 measurement [A. Hobart, S. Niccolai et al (CLAS), arXiv:2406.15539]

Binning scheme

- 4 bins in $(Q^2, x_{\rm BJ})$
 - Use θ_e to define bins in order to follow the shape of the acceptance
- $-t \in [0.08, 0.15], [0.15, 0.3], [0.3, 0.6], [0.6, 1.2] \text{ GeV}^2$

Yield and acceptance

 $\varepsilon_{Acc} = \frac{\text{Number of events for reconstructed MC passed all the nDVCS selections}}{\text{Number of events for generator-level MC inside the defined bin}}$

- π^0 contribution is negligible in some bins, while it is still significant in some other bins
- $N^{\rm corr} = (N_{\rm nDVCS} N_{\pi^0}) / \varepsilon_{\rm Acc}$

Acceptance-corrected yield

- The acceptance-corrected yield peaks at $\phi = 0$ or 360°
- The bin-volume correction is under study

Acceptance-corrected yield

- The acceptance-corrected yield peaks at $\phi = 0$ or 360°
- The bin-volume correction is under study

Summary

- nDVCS events are selected and compared with MC
- Beam-spin asymmetry is consistent with the recent CLAS12 measurement
- Acceptance-corrected yields are extracted in $(Q^2, x_{\rm BJ}, t, \phi)$ bins
- Next to do
 - Study other topologies (FD&FT, FD&FD) for nDVCS
 - Study the momentum corrections
 - Study the neutron efficiency correction and bin-volume correction
 - Extract the integrated luminosity and obtain the cross-sections
 - Estimate the systematic uncertainties

Thank you!

Backup slides

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FT (n in CD & γ in FT)

- $\Delta \phi$: difference in ϕ between
 - hadronic plane formed by the neutron and the virtual photon
 - hadronic plane formed by the neutron and the outgoing photon
- Δt : difference in *t* between
 - *t* calculated by the neutron
 - *t* calculated by the photon

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FT (n in CD & γ in FT)

• $\theta_{X\gamma}$: cone angle formed by the missing photon X ($en \rightarrow enX$) and the outgoing photon γ

-MC (scaled)

 $\theta_{X\gamma}$ [°]

— Data

- After the exclusivity selection
 - $N = 3.62 \times 10^5$ for CD&FT
 - $N = 0.74 \times 10^5$ for CD&FD

- > The data and MC distributions are very different
 - mainly due to the protons that are misidentified as neutrons, discussed in the later slides

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FD (n in CD & γ in FD)

- $\Delta \phi$: difference in ϕ between
 - hadronic plane formed by the neutron and the virtual photon
 - hadronic plane formed by the neutron and the outgoing photon
- Δt : difference in *t* between
 - *t* calculated by the neutron
 - *t* calculated by the photon

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&FD (n in CD & γ in FD)

• $\theta_{X\gamma}$: cone angle formed by the missing photon X ($en \rightarrow enX$) and the outgoing photon γ

 $p_X < 0.8 \; {
m GeV}$

 $\theta_{X\gamma} < 4.0^{\circ}$

- After the exclusivity selection
 - $N = 3.62 \times 10^5$ for CD&FT
 - $N = 0.74 \times 10^5$ for CD&FD

- > The data and MC distributions are very different
 - mainly due to the protons that are misidentified as neutrons, discussed in the later slides

TMVA training

• Number of hits for the n(p) cluster at CTOF and three layers of CND

• Deposit energy at CTOF and three layers of CND

- π^0 production contamination:
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - π^0 MC: reconstructed as nDVCS

- CD&FT:
 - Distributions for data are consistent with nDVCS MC, inconsistent with π^0 MC
 - nDVCS dominated
- CD&FD:
 - Significant π^0 production contamination

- π^0 production contamination:
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - π^0 MC: reconstructed as nDVCS

- CD&FT: nDVCS dominated
- CD&FD: significant π^0 production contamination
- The difference between data and MC for nDVCS might be also due to their different resolution
- Maybe need momentum correction

- π^0 production contamination:
 - $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$
 - π^0 MC: reconstructed as nDVCS

- CD&FT: nDVCS dominated
- CD&FD: significant π^0 production contamination
- The difference between data and MC for nDVCS might be also due to their different resolution
- Maybe need momentum correction

Study of π^0 production contamination

• $en \rightarrow en\pi^0 (\rightarrow \gamma \gamma)$ background subtraction:

•
$$N_{\text{DVCS}} = N_{\text{en}\gamma} - N_{en\pi^0} \times f^{\text{MC}} = N_{\text{en}\gamma} - N_{en\pi^0}$$

- Select π^0 production data
 - PID and fiducial cuts:
 - $p_e > 1$ GeV, $p_n > 0.3$ GeV, $p_\gamma > 0.3$ GeV
 - Same fiducial cuts for the nDVCS selection
 - Select events with at least 1 e^- , 1 n and 2 γ
 - $0.10 < m_{\gamma\gamma} < 0.17 \text{ GeV}$
 - For cases with more than one combination, select the one with the smallest χ^2 -like quantity (defined using exclusivity variables that peak at zero)
 - Reaction kinematics:
 - $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, $t > -1.9 \text{ GeV}^2$
 - Pre-selection before determining the exclusivity cuts:
 - $-0.5 < m_X^2 < 3 \text{ GeV}^2$, $0 < p_X < 1.5 \text{ GeV}$ for $ed \rightarrow en\gamma\gamma X$

Partially reconstructed $en\pi^{0}(1\gamma)$ $N_{en\pi^{0}(1\gamma)}^{MC}$ and passed DVCS selection $N_{en\pi^{0}(2\gamma)}^{MC}$ Fully reconstructed $en\pi^{0}(2\gamma)$ and passed π^{0} production selection

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution
- CD&2FD: n in CD and 2 γ in FD

- After the exclusivity selection
 - $N = 8.39 \times 10^5$ for CD&2FD
 - $N = 0.88 \times 10^5$ for CD&2FT
 - $N = 0.52 \times 10^5$ for CD&1FT1FD

- $|\Delta \phi| < 4.4^{\circ}$
- $-0.5 < \Delta t < 1.5 \text{ GeV}^2$
- $-0.33 < m_X^2 < 0.13 \text{ GeV}^2$ for $en \rightarrow en\gamma\gamma X$
- $-1.3 < m_X^2 < 1.5 \text{ GeV}^2$ for $en \rightarrow en\gamma_1 X$
- $-2.4 < m_X^2 < 1.2 \text{ GeV}^2$ for $en \rightarrow en\gamma_2 X$
- $\theta_{X\pi^0} < 8.4^\circ$ for $en \to enX$
- $-0.1 < m_X^2 < 2.4 \text{ GeV}^2$ for $ed \rightarrow en\gamma\gamma X$
- $p_X < 1.0 \text{ GeV for } ed \rightarrow en\gamma X$

- Events for *n* in CD after the exclusivity selection
 - still have protons misidentified as neutrons
 - apply the BDT cut

The distributions for other variables and for CD&2FT and CD&1FT1FD are presented in backup slides

Distributions of π^0 production variables

- CD&2FD: n in CD and 2 γ in FD
 - After the BDT cut

CD&2FD

0.2

0.4

Events

2 È

0.8

0.6

0.4

0.2

0 L 0

• The difference between data and MC is maybe due to their different resolution

Distributions of π^0 production variables

- CD&2FD: *n* in CD and 2 γ in FD
 - After the BDT cut
 - The difference between data and MC is maybe due to their different resolution
 - Maybe need momentum correction

— Data

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution

- CD&2FD: n in CD and 2 γ in FD
 - still have protons misidentified as neutrons

The distributions for CD&2FT and CD&1FT1FD are presented in backup slides

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution

- CD&2FT: n in CD and 2 γ in FT
 - still have protons misidentified as neutrons

- Criteria determined by comparing data and MC
 - ~ 2σ of the MC distribution

- CD&1FT1FD: *n* in CD and 1 γ in FT, 1 γ in FD
 - still have protons misidentified as neutrons

