

Strange Hadron Spectroscopy with Secondary K_L beam in Hall D

Moskov Amaryan (for KLF Collaboration)

July 21-25, 2025

PAC53 Jeopardy

Outline

- Introduction
- KLF Beamline
- Strange Hyperon Spectroscopy
- Strange Meson Spectroscopy
- Summary

Introduction

- The proposal was approved by PAC48 in 2020 to run 200 days on LH2 and LD2 targets (for the first time ever) equally divided https://arxiv.org/pdf/2008.08215
- The main goal of the experiment is hyperon spectroscopy and strange meson spectroscopy

KLF Beamline

From Executive Committee

- We are evaluating CPS performance with a 20% RL radiator. ullet
 - Currently, no problem is identified.
- CPS magnet and power supply have • been procured.
 - \$250K total cost for procurement.
 - Both magnet and the power supply are at JLAB.
- The plan is to submit a purchase request for the copper absorber this • year.
 - Subject to funding availability.

Schedule of installation is under discussion

Unit: °C

Kaon Production Target (KPT)

- KPT engineering design is nearly ready
- KPT+beamline implemented in Geant4 and FLUKA
- Variable tungsten absorber (~14 cm) to reduce bckg \bullet
- Rates of FDC, CDC and TOF are at or below GlueX lin
- No obvious issues
- Radiation level in the hall is acceptable

Beam

Schedule of installation is under discussion

GEANT4

Flux Monitor (expanded view)

-Pizza - 48 layers, two times 24

- -Tracker 4 planes, each plane has 4 layers, 122 straws per layer -High Resolution Scintillators- 64 elements in total, 32 per layer
- -TOF 22 Bars, each 10cm wide

Schedule of installation is under discussion

Analysis	K _L Rate (Hz) (10cm W, 10% RL)	K _L Rate (Hz) (14cm W, 20% RL)	Effective K _L Absorption length used (cm)	Comments
Ilya & Igor	10000			PAC 48
Pavel		8200	10.8	FLUKA
Eugene	3300	1900*	7.8	ϕp production only
Eugene	8500	5000*	7.8	PYTHIA, 7KHz - 10KHz range
Richard		1500	7.8	ϕp production only
Moskov		7600	6.4	Based on SLAC data
Hovanes		3100	7.1	Based on SLAC data

SLAC rate was 10 K_L/s Phys. Rev. D 7, 708 (1973).

GlueX Start Counter NIM, A927 (2019) 330-342

E. Pooser, F. Barbosa, W. Boeglin et al.

Nuclear Inst. and Methods in Physics Research, A 927 (2019) 330-342

Fig. 1. The GLUEX Start Counter mounted to the liquid H₂ target assembly. The beam direction is oriented from left to right down the central axis of the ST.

Fig. 2. 2-D cross section of the Start Counter.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Start Counter for KLF NIM, A1034 (2022) 166745

Plastic Scintillator Barrel (PSB) for WASA-FRS

Will be ready by the end of 2026

Resolutions

many more states including hybrids (thick bordered)

Edwards, Mathur, Richards and Wallace, Phys. Rev. D 87, 054506 (2013)

Some examples

Induced polarization

Differential results on the induced polarization of Ξ^0 from $K_L p \to K^+ \Xi^0$ events events from simulations corresponding to 100 days of running. <u>Left</u>: From Proposal [**KLF:2020gai**]. <u>Right</u>: From exclusive Ξ^0 reconstruction using current software and including the use of kinematical fitting.

New MC simulations with KLF

Isospin-Selective Reaction $K_L p \rightarrow \pi^+ \Sigma^0$ Provides Clean Probe for Investigating $I = 1 \Sigma^*$ Resonances

Accepted for publication in PRD

Analysis of this reaction using effective *Lagrangian* approach for first time, incorporating well-established (4*): $\Sigma(1189)1/2^+$, $\Sigma(1385)3/2^+$, $\Sigma(1670)3/2^-$, & $\Sigma(1775)5/2^-$ states, while also exploring contributions from other unestablished states.

Dan Guo, Jun Shi, Igor Strakovsky, & Bing-Song Zou, arXiv:2504.21342 [hep-ph]

It was found that besides established resonances, contributions from $\Sigma(1660)1/2^+$ (3*), $\Sigma(1580)3/2^-$ (1*), & $\Sigma(1620)1/2^-$ (1*) improve description.

Strange Meson Spectroscopy

Proposed Measurements

From Pelaez and Rodas paper: PRD93(2016)

J. Pelaez and A. Rodas, Phys.Rept. 969 (2022)

arXiv:1701.07346

Workshop YSTAR2016 Mini-Proceedings

1.5

hON

PDG 2016 PDG 2016+ (

37

Temperature

~		-		B. A.
-	U.C.		١.	IV.
	-			

D. Diakonov, V. Petrov and M. V. Polyakov, Z. Phys. A **359**, 305 (1997).

The figure from Geant4 simulation is for 55 days of running. In 100 days we expect ~4000 events in the peak with S/B = 5/1. Simulation is done for natural width of 0.5 MeV.

Summary

- For the first time in the history of Particle Physics intensive beam of neutral K_L will be used for the strange hadron spectroscopy.
- In hyperon spectroscopy all excited states of Σ^* 's and Λ^* 's will be measured in the formation reactions.
- The Ξ*'s will be measured either as a decay product of Σ*'s in the formation reactions or via direct production mechanisms.
- The Ω^* hyperons will be measured in the production reactions.

- K^* states with unprecedented accuracy.

- existence or non-exiatence of Θ^+ pentaquark.

Currently KLF Collaboration consists of 43 experimental

groups with 145 members.

• In the strange meson sector it will allow to measure the mass and the width of so-called κ scalar mesons as well as of higher

• The proposed measurements will shed a light on thermodynamic properties of the Early Universe 1 μ s after the Big Bang.

• In addition to regular 3-quark states, it will also provide an unprecedented measurement of pentaquark states.

• The proposed experiment is crucial to answer the question of either

Everyone is welcome to join!

Thank you!