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Making the Case for Jefferson Lab Exploring short-range correlations lies at

the heart of the physics program at
Jefferson Lab

9.8. Two-body correlations in nuclei
The very simplest theoretical picture of a large nucleus treats it as a gas of non-interacting
nucleons that move freely through the nuclear volume. Ironically, this overly simple picture is
useful because the strong short range repulsion between nucleons keeps them apart, preventing
the nucleus from collapsing, guaranteeing that many body forces (involving three or more
nucleons) must be small, and clearing the way for the longer range forces to be averaged so
that they can be treated as a mean field. From this point of view, any correlations between
the nucleons are either a reflection of the strong short range forces, or a signal of the departure
from the mean field. In either case, direct observation of correlations is extremely interesting
and tells us how the NN force is modified by the nuclear medium, or whether or not there are
highly correlated 6-quark states present in nuclei. While this was believed to be an important
program, in 1985 it was thought that correlations might show up as the knockout of a pair of
nucleons, such as might emerge from a 6-quark bag as suggested by the right-most cartoon in
Fig. 2.

What happened? The observations of correlations is one of the most exciting developments
to emerge from the Jefferson Lab program but the “best” observation of correlations did not
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involve a coincidence experiment at alll This was an “inclusive” measurement in which only the
scattered electron was observed. As shown in Fig. 4, for large Q? this cross section depends only
on the scaling variable z, and it is easy to show that scattering from a single, free nucleon is
possible only if x < 1. The most direct way to see correlations is therefore to look at processes
in which z > 1. Under this condition, scattering is impossible unless the nucleon is bound in the
nucleus. The ratio of the scattering cross section from different nuclei for x > 1 will therefore

Recent phenomenological comparisons [4-4] (see Figure 4.2) show that the strength of the EMC
effect in different nuclei is linearly related to the short range correlations scale factor, a2(A4/d).
This linear relation indicates, but does not prove, that the EMC effect is caused by local
modifications of nucleon structure occurring when two would-be nucleons make a close
encounter and briefly comprise a system of density high enough to be comparable to that of
neutron stars. This relationship will be tested and refined at 12 GeV by a series of EMC and
SRC experiments covering a wide range of nuclei [4-19, 4-20, 4-24, 4-25]. The deuteron
experiment mentioned above [4-18] will increase our understanding of the two-nucleon system
that we use as a baseline for both the EMC and SRC measurements.

depend in part on the size of the two-body correlations in these nuclei (and, by extension, the
ratios for z > n — 1 depend on n-body correlations). This fact was predicted before 1985, but

sufficiently precise data were unavailable and the accurate observations at Jefferson Lab have Zzz
opened up this area of study. - 5 ° 92
As anticipated in 1985, correlations have also been observed in one and two nucleon knock- Jozo b B
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Figure 4.2: (left) The strength of the EMC effect (the EMC slope) plotted versus the average nuclear density [4-
1]. (right) The strength of the EMC effect plotted versus the SRC scale factors [4-4]. The drawing in the upper

left shows deep inelastic electron scattering from a quark in a nucleon. The drawing in the lower right shows
e p g r a e electron scattering from a correlated NN pair. (Figure credit: Anna Shneor).

2.D.2 Probing the Limits of the Standard Model of Nuclear Physics:
Short-Range Correlations in Nuclei

2001

Observing short-range correlations (SRC) in nuclei has been an important goal of experimental
nuclear physics for decades [Be99, Be67]. Not that these correlations are small — calculations of
nuclear wavefunctions with realistic N N potentials consistently indicate that in heavy enough nuclei
about 25% of the nucleons have momenta above the Fermi surface [Pa97]. This corresponds to about
50% of the kinetic energy being due to SRC. The experimental problem has been the unavailability
of the high-momentum-transfer kinematics that could discriminate decisively between the effects
of SRC in the initial- and final-state interactions. Though the final-state interactions in nucleon
knockout do not disappear at large Q?, two important simplifications occur which make extraction
of the information about the short-range nuclear structure possible. First, in high-energy kinematics
a “hidden” conservation law exists — the light-cone momentum fractions of slow nucleons do not
change if the ejected nucleon elastically scatters off slow nucleons [Fr97]. Second, the rescatterings
of a high-energy nucleon can be described by the generalized Glauber approximation, which takes
into account a difference in the space-time picture of proton-nucleus scattering (a proton coming
from —oo) and the A(e,€'p) process (a proton is produced inside the nucleus) and also accounts
for the nonzero Fermi momenta of rescattered nucleons [Fr97].

5.1.2. Short range NN correlations

While mapping out the high missing momentum (P,,) part of the spectral function presents challenges, it is still
possible to study SRCs by selecting kinematics where the reaction is dominated by SRC contributions. Nucleons
with momenta well above the Fermi momentum are associated with SRCs that are generated by the hard, short-range
components of the NN interaction [259, 260, 252, 249, 251, 261]. Because they are generated by two-body interac-
tions, they have a universal structure that comes from the NN interaction, and scattering measurements in kinematics
dominated by SRCs allow for studies of the nature and size of SRCs in nuclei. Inclusive scattering at modest Q and
x > 1.4, where scattering from low-momentum nucleons is kinematically forbidden, provides sensitivity to the relative
contribution of SRCs as a function of the mass number A via measurements of the inclusive A/?H cross section ratios.
During 6 GeV running, experiments confirmed the initial observation of SRCs [262] and mapped out the A dependence
of SRCs in light and heavy nuclei [263, 264]. These data demonstrated that the contribution is sensitive to details of
the nuclear structure [265, 266] rather than the previously assumed average nuclear density [267]. In addition, they
showed a clear correlation between the contribution of SRCs [264] and the size of the EMC effect [265], discussed
further in Sec. 5.3. Measurements of two-nucleon knockout, where both nucleons from the SRC are observed in the
final state, showed dominance of np-SRC as well as a dependence of the np/pp SRC ratio as a function of the struck
nucleon’s momentum (shown in Figure 16. The dominance of np-SRCs was confirmed in additional nuclei using the
A(e, €’ p) [268] reaction and later through inclusive measurements taking advantage of the target isospin structure in
measurements of the *8Ca/*’Ca cross section ratio [269]. Finally, measurements at x > 2 tried to establish the pres-
ence of three-nucleon SRCs (3N-SRCs), but low-Q? measurements did not observe 3N-SRC dominance [270], while
higher-Q? data was consistent with 3N-SRC dominance but had extremely limited statistics [264].
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Short-Range Correlations (SRCs)
at Jefferson Lab
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Why a white-paper? Why now?

4+ Re-evaluate what we hope to understand
4+ |dentify which aspects of the problem are already well in hand
+ Determine where additional input will be most illuminating

+ Acknowledge that unanswered questions remain
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2N SRC pairs

A nucleon pair forms a short-range
correlation when they are very close
together in the nucleus (=1 fm)

These pairs exhibit high relative
momentum and low c.m. momentum
compared with kf (~300 MeV/c)

The nucleons in the pair have back-to-back
momenta, indicating a strong, short-
distance interaction



SRCs dominate the high-momentum tail of the nuclear momentum
distribution

Short-Range
Correlations

Log Momentum Distribution

Nucleon Momentum
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Primary experimental technique:
Electron scattering

e’(EI’ I_{),)
e (EOJ I_{))

A Missing Momentum

Leading nucleon

Reactions:

Recoiling nucleon

Inclusive: (e,e’)
Single nucleon Knockout: A(e,e’N)
Two nucleon knock out: A(e,e’'NN)



Inclusive A(e,e’) results
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Kinematics

Pnin [GeV/c]

0.9 |
038 |
0.7 |
06 |
0.5 |
0.4 |
0.3 |
0.2 | ,
01|

SRC is dominant at high x

WNON =]

_ Forbiaden

1.4

16 1.8

12

2

The onset of SRC
dominance shifts to
lower x as Q?
Increases



Inclusive A(e,e’) results
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Consistent a, measurements:
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Early studies suggested that the parameter a, would scale
with the average nuclear density, approximated by A /2
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Q2 (GeV?)
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Studies of isospin dependence using inclusive measurements
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3H/3He ratio per nucleon
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Lessons learned inclusive A(e,e’)

o Shows SRC dominance at k > ki, ...

© SRC-pair properties are universal across nuclei

© Unprecedented direct comparison to theory in light nuclei!
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Single nucleon knockout A(e,e’pin)

Detecting the struck nucleon

21



A=3 nuclei: Benchmark systems for testing theory
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A=3 nuclei: Benchmark systems for testing theory
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Probing pairing mechanisms with
Yca, 48Ca, **Fe nuclei

New Hall C data : CaFe (e,e’p)
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Lessons learned single nucleon
knockout A(e,e’p/n)

© Direct comparison to theory for light nuclei
© Proportional to abundance of high-momentum of protons and
neutron

©  Which nucleons pair (pairing mechanisms)

© Narrow transition region (mean field = SRC)
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Two-nucleon knock out A(e,e’NN)




Two-nucleon knock out A(e,e’NN)
results
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e About 20% of nucleons in medium to heavy
nuclei belong to SRC pairs

o Almost all high momentum nucleons (k > kf)
belong to an SRC pair

e predominantly in neutron-proton pairs

e pair is back-to-back with large relative

momentum and smaller center of mass
momentum

Single nucleons

. n-p . n-n p-p

R. Subedi et al, Sc 320, 1476(2008)
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SRCs pairs are predominantly np
pairs (90% np, 5% each pp and nn)
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P, distribution width is consistent with the sum of two MF nucleons
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Neutrons saturate Protons grow

— —
(0) Qo

-
aN

IIIIlITIlllIlllllllllllllT

neutrons

—h

Al/C Fe/C

High-Momentum Fraction
o

Pb/C
S 1 R
Neutron Excess [N/Z]

Protons ‘Speed-Up’ In Neutron-Rich Nuclei Duer Nature (2018)

32



Tensor-to-Scalar transition
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© np dominance is due to the tensor force around ~ 400 MeV/c

A. Schmidt et al. (CLAS), Nature 578, 540 (2020)

© np dominance is A-independent

o scalar force dominance as p,;.. — 1GeV/c

° p,.i.. distribution is universal
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Q’ Independence Under analysis

epplep vs. Q%(0.55GeV < ppiss < 0.7GeV)
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Figures courtesy of Andrew Denniston
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L.essons learned two-nucleon knock out
A(e,e’NN)

©  pn pair dominance
© All* high momentum nucleons belong in SRC pairs

© pp/pn ratio increases with missing momentum

© Tensor — scalar transitions

© Universality and scale separation: nuclear momentum
distribution factorizes at short distance (or high momentum)
into a two-body NN SRC part and a many-body (A - 2) part
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Interpreting SRC Data

==> factorization framework

Elementary Nuclear Two-body Center of mass
eN cross section Contacts wave function motion

O = GeN(Q) ' Z . CI{{VN ' |§b(prelative) ‘2 . n(pCm)
NN
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Interpreting SRC Data

==> factorization framework

Elementary Nuclear Two-body Center of mass
eN cross section Contacts wave function motion

0 = GeN(Q) ' Z . CAVN . ‘qb(prelative) ‘2 . n(pCm)
NN

Probe Independence: How Well Do
We Understand SRCs?
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Studying 2N SRC using
photoproduction
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® Establish probe-independence
® Explore unique kinematics

® Probe Initial-state neutrons
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Counts

Under Analysis

He(y, o~ pp)

® First observation of SRC breakup
in photoproduction using (y,op)
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2001

® Measures initial-state neutrons
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Figures courtesy of Jackson Pybus
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Consistent with electron- and hadron-scattering results
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Studying 2N SRC using hadronic
probes
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JINR and GSI-FAIR
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Successful SRC identification

'“C(p,2p)'"B SRC BM@N
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M. Patsyuk et al., Nat. Phys. 17 (2021)
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Clear SRC Factorization

“C(p,2p)'°B @ GSI-FAIR
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Back-to-back SRC pairs SRC / A-2 system factorization
Confirmed pn dominance, low Do Figures courtesy of Julian Kahlnbow

indication for factorization A-2 vs pairs
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Open Questions

Quantitative era of 2N SRC

* Scale dependence (Q?)
All observables

® Probe independence (e, p, 7)
Confirm factorization

® Pairing mechanisms

® Precision of interpretation in terms
of ground state properties (theory)

® Neutron rich systems
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New observables: Using tensor
polarized deuteron

A(e,e’) A(e,e’p)
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Measurement of the repulsive strength of
the nuclear core ever done in electro-
nuclear processes

Further understanding of NN potentials
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Open Questions

Discovery era of 3N SRC

e (e,e’) high Q% , x>2
existence of a second plateau

® 3N KO (e,e’ppN)
Extraction of triplet characteristics

Theory guidance

® Kinematics

® Ground state

® Factorization

® Phenomenology

49



Light cone momentum
fraction in a 3N system
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Discovering 3N SRC

Inclusive worked for 2N SRC
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Completely dominant
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Discovering 3N SRC

Inclusive worked for 2N SRC
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Previous data not at the quite at the right kinematics (low Qz)
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Under analysis (XEM2) just at the threshold where 3N SRC are dominant
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Overview

A(e,e'N)|A(e,e'2N)| A(e,€e'3N)

A(p, 2p)

p(Av 2p(A — N))

p(A,2pN

N
|
3

3N SRC Observation
Probability
Isospin Dependence
Characteristics

2N SRC Observation
N/Z Dependence
Few Body
Tensor Scalar Evolution
G.S. Factorization and Onset
Q? Independence
Pair Mom. Distribution
Quantum Nature

B Published

B Approved
B Future
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Overview

Ae,e')|A(e,e'N)| A(e,e’2N)| A(e, e'3N)

3N SRC Observation [ ]
Probability ]
Isospin Dependence
Characteristics

2N SRC Observation
N/Z Dependence
Few Body [
Tensor Scalar Evolution
G.S. Factorization and Onset
Q? Independence
Pair Mom. Distribution
Quantum Nature

B Future with electron scattering
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SRC white paper group

+ Large Community that participated
in our While-Paper Forum, provided
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