Hall-B Run Group H CLAS12 Experiments with a Transversely Polarized Target

Contalbrigo Marco - INFN Ferrara

JLab PAC53 Meeting, 23th July 2025

3D Nucleon Structure by DIS

Run Group H

PAC39 2012						Access to unique		
Experiment	Contact	Title	Rating	PAC days		observables in		
C12-11-111	M. Contalbrigo	Transverse spin effect in SIDIS at 11 GeV with a transversely polarized target using CLAS12	A	110	4	SIDIS hadron		
C12-12-009	H. <u>Avakian</u>	Measurement of <u>transversity</u> with di- hadron production in SIDIS with a transversely polarized target	A	110	4	SIDIS Di-hadron		
C12-12-010	L. Elouadrhiri	Deeply Virtual Compton scattering at 11 GeV with transversely polarized target using the CLAS12 detector	A	110	4	DVCS		
						Gather unprecedented		
All RGH experimen	ts selected among	the high impact JLab measurement	s Pa	AC42 [2014]		information on		
						Transversity		
RGH experiment sta	atus (with HDice) co	nfirmed at PAC48 in 2020 (during jeopa	ardy pro	cess)		Tensor charge		
with C1 condition o	with C1 condition on target performance							
RGH status modifie	d to C2 in 2024 (duri	ing jeopardy process) to properly evalu	ate the	target change		GPD E		
✓ GEANT simulatio	ns 🗸 Impact stud	y √ Systematics				quark OAM		

Semi-Inclusive DIS

$$\begin{aligned} \frac{d\sigma}{dxdQ^2dzdP_{h\perp}d\phi d\phi_S} \propto \left[F_{UU} + \epsilon\cos(\phi)F_{LU}^{\cos(2\phi)}\right] + & S_L\left[\sin(2\phi)F_{LU}^{\sin(2\phi)}\right] + & \lambda_e S_L\left[\sqrt{1-\epsilon^2}F_{LL}\right] \\ + & S_T\left[\sin(\phi-\phi_S)F_{UT}^{\sin(\phi-\phi_S)} + & \epsilon\sin(\phi+\phi_S)F_{UT}^{\sin(\phi+\phi_S)} + \epsilon\sin(3\phi-\phi_S)F_{UT}^{\sin(3\phi-\phi_S)}\right] \\ & + & \lambda_e S_T\left[\sqrt{1-\epsilon^2}\cos(\phi-\phi_S)F_{LT}^{\cos(\phi-\phi_S)}\right] + O\left(\frac{1}{Q^2}\right) \end{aligned}$$

What we know: TMDs

Large sensitivity expected in the valence region

Lack of data above x = 0.3 and no fully differential (4D) analysis available so far

CLAS12 can be the first experiment to achieve a 4D analysis in the valence region

Transversity from single hadron SIDIS

Transversity from di-hadron SIDIS

....

0.2

0.4

Radici, Bacchetta '18

Benel et al '19

0.6

D'Alesio et al '20

 \boldsymbol{x}

0.8

Deep Virtual Compton Scattering

Rare access to Im& CFF with no kinematic suppression

$$d\sigma_{UT}^{\mathrm{I}} = \frac{-K_{\mathrm{I}}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \left\{ \sum_{n=0}^{3} c_{n,\mathrm{TP}-}^{\mathrm{I}} \sin(\phi - \phi_{S}) \cos(n\phi) + \sum_{n=1}^{3} s_{n,\mathrm{TP}+}^{\mathrm{I}} \cos(\phi - \phi_{S}) \sin(n\phi) \right\}$$

$$c_{1,\text{TP-}}^{\text{I}} \propto -\frac{M}{Q} \Im \left\{ \frac{t}{4M^2} \left[(2-x_B)F_1 \mathcal{E} - 4\frac{1-x_B}{2-x_B}F_2 \mathcal{H} \right] + x_B \xi \left[F_1 (\mathcal{H} + \mathcal{E}) - (F_1 + F_2)(\tilde{\mathcal{H}} + \frac{t}{4M^2}\tilde{\mathcal{E}}) \right] \right\}$$

GPD E is essential to pin down the quark dynamics (OAM) It is poorly known expecially for the u-quark flavor

$$\sum_{q} \int_{-1}^{+1} dx \, x [H^q(x,\xi,t=0) + E^q(x,\xi,t=0)] = 2 \, J_q$$

 $\begin{array}{l} \mbox{CLAS12 can be the first experiment in exploiting both} \\ A_{LU} \mbox{ measurement on neutron with} \\ A_{UT} \mbox{ measurement on proton} \end{array}$

CLAS12 RGB measurement of A_{IU} on neutron, Phys.Rev.Lett. 133 (2024) 21, 211903

Run Group H

Large acceptance spectrometer. Operational since 02/18

RICH

10 m

Luminosity up to 10³⁵ cm⁻² s⁻¹

Highly polarized electron beam

Polarized targets

Broad kinematic range coverage (current to target fragmentation)

Available or well-known technology No specific R&D required

Features: wide phase space cover, excellent PID and statistics optimized for a multi-D analysis

- disentangle kinematical correlations
- verify expected dependences (e.g. in Q²) and isolate peculiar regimes (e.g. in z)
- study transition regions (e.g. in P_T)

RGH Target & Magnet

Most viable solution to prioritize physics

Consolidated dynamically polarized NH₃ technology

Designed based on already successful realizations

Hall-A G2p-Gep target (replica optimized for HTCC) Hall-C E12-15-005 magnet (replica optimized for recoil detection)

5T dipole acceptance: ± 25° vertical

 \pm 65° horizontal

RGH Beam Line

Based on

existing 0.7 cm raster

commercial 7.5T magnets

✓ space
 ✓ synchrotron radiation
 ✓ beam rastering

Geant Simulation: RGH Beam Line

Geant Simulation: DC Occupancy

Target & Recoil Detector

Recoil Tracking

GEM- $\mu Rwell$ to provide 2D information with 100 μm resolution

- ✓ Wanted gain/efficiency is preserved below 600 V safe bias
- \checkmark 5 ns time resolution can be achieved from signal shape fit
- ✓ TPC-like readout to correct the impinging angle has been proven
- ✓ Suitable APV25 readout available

Recoil TOF

Scintillating bars + SiPM to tag particles with 100 ps resolution

- ✓ Flexible geometry to provide spatial matching and control of accidentals
- ✓ Compact layout
- ✓ Suitable readout exist (MAROC or PETIROC chip)

Proven to match 100 ps by PANDA and MUSE R&D

T. Rostomyan, NIMA 986 (2021) 164801 – MUSE experiment

Table A.2: Time resolutions and efficiencies for 3 mm thick, 300 mm long and 12 mm wide BC-404 BM paddles. All results are better than the experimental requirements.

Scintillator	SiPM	σ_T	ϵ
		(ps)	(%)
BC-404	S13360-3075PE	59	≥ 99.9
BC-404	S13360-3050PE	60	≥ 99.7
BC-404	ASD-NUV3S-P-40	65	≥ 99.0

Geant Simulation: Recoil Performance

Recoil technology can cope with the background rates

Still basic reconstruction algorithm provides a conservative estimate

Recoil reconstruction is adequate even in the presence of background

Background has a minimal impact: similar recoil resolution, few percent efficency loss

Geant Simulation: Recoil Performance

Recoil technology can cope with the background rates

Still basic reconstruction algorithm provides a conservative estimate

Recoil reconstruction is adequate even in the presence of background

 π^0 contamination is at the level of RGC (~ 30%)

Impact Study: 4D Map

Impact Study: Tensor Charge from SIDIS

Fundamental quantity related to BSM physics: EDM and tensor coupling

Projections with and without CLAS12 di-hadron pseudo-data (with lattice inputs)

100 PAC days requested to be competitive in precision to lattice for $\delta \textbf{u}$

$$\delta u = \int_{0}^{1} dx \left(h_{1}^{u}(x) - h_{1}^{\bar{u}}(x) \right), \quad \delta d = \int_{0}^{1} dx \left(h_{1}^{d}(x) - h_{1}^{\bar{d}}(x) \right)$$

Impact Study: OAM from DVCS

Analysis of Melany Higuera Angulo using GEPARD framework (LDRD project) and relevant data + RGH pseudo-data

100 PAC days requested to reduce by 2/3 the uncertainty on Im \mathcal{E}

Systematics

RGH measurements are expected to be dominated by the statistical uncertainty

Target spin state can be regularly rotated by microwave-induced swap preserving acceptance RGH luminosity 5 x 10³³ cm² s⁻¹ is 1/20 of the nominal CLAS12 luminosity Consolidated methods based on previous experience Inputs from previous CLAS12 experiments will reduce assumptions in systematics

To be noted: previous high-luminosity CLAS12 experiments provide a solid benchmark e.g., unpolarized cross section terms will be constrained by RGA/RGB and target dilutions by RGC

Conservative systematics are derived from previous relevant realizations and analyses, with a cross-check for RGH acceptance peculiarities.

	Source	Systematic Uncertainty		
SIDIS	Target polarization	5 %		Sou
single	Target dilution	2~%		Tar
hadron	Radiative effects	3~%		Tar
naaron	Acceptance and bin-migration	3~%		Rec
				π^0
Source		Systematic Uncertainty		Exc
Target polariz	ation	5 %		
Target dilution	n	2 %	ç	
Baryonic cont	ribution from target fragmentation	1-6%		נוסת ו: הם
Bin migration	close to ρ mass	1 - 10%	C	וג na

Source	Systematic Uncertainty
Target polarization	5~%
Target dilution	1~%
Recoil performances	5~%
π^0 background	3~%
Exclusivity cuts	$10 \ \%$

JLab PAC53 Meeting – 23rd July 2025

di-hadron

DVCS

Beam Request

RGH implements the target configuration which is most sensitive to the 3D nucleon structure study and capitalizes on CLAS12 with a complete set of target polarizations

100 (physics) + 25 (ancillary) PAC days requested to achieve unprecedent precision in the valence region

Beam	Beam	Beam	Target	Material	Beamtime
Energy	Current	Requirements		Thickness	
(GeV)	(nA)			(mg/cm^2)	(PAC days)
10.6	1	Polarized	$ m NH_3$	1040	100
10.6	1	Polarized	$^{12}\mathrm{C},\mathrm{CH}_{2}$	1040,1040	5+8
10.6	1	Polarized	Empty	na	2
			Operations		10
Total					125

100 days of physics run to achieve the RGH goals

5 days for commissioning and alignment

8+2 days for background studies (target dilutions)

10 days for target annealing and target replacements

Theory Report RGH measurements are critical for the studies of transverse spin phenomena in QCD with high impact physics such as the elusive nucleon tensor charge that is relevant for a broad community including LQCD and BSM physics.

TAC Report No major technical hurdle.

In the replies, proponents clarified details on: chicane, beam monitor, and beam polarization uncertainty.

PAC ReadersScientific goals are well aligned with the 2023 NSAC Long Range Plan, preceding and complementing the EIC program.
Awareness of current literature, competing efforts, and theoretical frameworks.
Rare opportunity to get unprecedented access to the parton dynamics in the valence region with a multi-D framework
Acknowledgment of CLAS12 demonstrated capability, established target technology, full GEANT simulation.

In the replies, proponents clarified details on:

Instrumentation (vibrations, field mapping, precision in target re-position, chicane geometry, target spin swap,..)

Systematics (background subtraction, unpolarized terms, longitudinal photon component, acceptance effects, radiative effects, ...)

PAC Review

Thank you very much to you and your colleagues for the detailed answers and additional plots.

In addition, we would be happy to understand how the acceptance stability will be ensured and whether the MC will be used to simulate the impact of possible acceptance variations. We can discuss about that point during the PAC next week.

Fiducial cuts will be implemented at the analysis level to select the detector regions of suitable stability. During the calibration procedure of the various CLAS12 subsystems, dead or inefficient channels are flagged, on a run-by-run basis, in the calibration database, and this is done also for the Monte Carlo. These dead/inefficient channels are then eliminated in the reconstruction, for both data and MC. Run-dependent simulations are then produced, which include the run-dependent dead or inefficient detector channels. We don't foresee major differences in the way the acceptance will vary during RGH with respect to previously run CLAS12 experiments. CLAS12 is a quite stable setup overall.

Enough (> 10 k) spare channels exist from INFN GEM project for SBS in Hall-A

Based on the well-known APV25 chip + SSP DAQ (upgraded version of MPD under study)

- $\checkmark~$ Able to cope with 500 kHz/cm² and 60% occupancy
- \checkmark Same system used with the $\mu Rwell$ prototypes

Recoil TOF Readout

Enough (> 1 k) spare channels from RICH readout to be updated to ALERT firmware to get < 100 ps readout jitter

RICH readout

- MAROC dynamic range can cope with multi-photon signals
- ✓ Clock distribution supports 100 ps readout precision

Linear low noise regulators

Option to adopt CLAS12-ALERT readout

- ✓ PETIROC has a better dynamic range (multi-photons)
- ✓ Clock distribution supports
 50 ps readout precision

Low-Voltage Input High-Voltage Input

CLK/TRIG/SYNC

Ethernet (optical)

TMD Regime

CLAS12 Phase Space

Beam Line Test at 1 nA

Beam Line Test at 1 nA

2C24 BPM locks at X -2, Y +1.3 /home/epics/DATA/HARP_SCANS//harp_tagger/harp_tagger_07-15-25_22:37:58.txt Harp: tagger Counter: Mid Stream Left 45 profile $\alpha = 12.06 \text{ deg}$ a = 0.67b = 0.22

38.5 39 39.5

40

40.5 41 Wire X [mm]

Magnet Configuration

Torus vs target

Table 7: Comparison of Torus coil force with and without Target magnet

Minimal forces generated by mutual interaction of magnets

Target vs chicane

Table 3: Coil forces at 5T central field:

Coil number	Fx (N)	Fy (N)	Fz(N)
1	0	644876	0
2	0	22573	0
3	0	-109371	0
4	0	-64090	0
5	0	-644876	0
6	0	-22573	0
7	0	109371	0
8	0	64090	0
Total	0	0	0

Table 4: Coil forces in presence of 3 chicane magnet

Coil number	Fx (N)	Fy (N)	Fz(N)
31	0	644942	358
32	0	22600	178
33	0	-109362	76
34	0	-64087	25
35	0	-644942	358
36	0	-22600	178
37	0	109362	76
38	0	64087	25
Total	0	0	1275

Target vs torus

Table 5: Target coil force with and without Torus

Target	M	/ithout Toru	ıs	With Torus			
Magnet Coil #	Fx (N)	Fy (N)	Fz (N)	Fx (N)	Fy (N)	Fz (N)	
1	0	-644876	0	0	-644876	0	
2	0	-22573	0	0	-22573	0	
3	0	109371	0	0	109371	0	
4	0	64090	0	0	64090	0	
5	0	644876	0	0	644876	0	
6	0	22573	0	0	22573	0	
7	0	-109371	0	0	-109371	0	
8	0	-64090	0	0	-64090	0	
Total Force	0	0	0	0	0	0	

Torus N	1agnet Coil #	Witho	ut Target M	lagnet	With	With Target Magnet			Effect of Target Magnet		
Coil	SubCoil	Fx (N)	Fy (N)	Fz (N)	Fx (N)	Fy(N)	Fz (N)	Fx (N)	Fy (N)	Fz (N)	
	1	0	1220649	0	300	1220649	0	300	0		
	2	0	361535	411162	95	361535	411162	95	0		
	3	0	-294544	729023	338	-294544	729023	338	0		
	4	0	-177228	75215	71	-177228	75215	71	0		
1	5	0	-246391	-99549	-19	-246391	-99549	-19	0		
	6	0	-76474	-181546	-258	-76474	-181546	-258	0		
	7	0	291655	-721872	-1139	291655	-721872	-1139	0		
	8	0	350962	-212458	125	350962	-212458	125	0		
	9	-1057113	610325	0	-1056808	610322	0	305	-3		
	10	-313099	180768	411162	-313025	180780	411086	74	12	65	
	11	255083	-147272	729023	255048	-147057	728682	-35	215	-34	
	12	153484	-88614	75215	153441	-88548	75187	-43	66	-2	
2	13	213381	-123196	-99549	213218	-123112	-99475	-163	83	7	
	14	66228	-38237	-181546	66109	-38317	-181366	-119	-80	1	
	15	-252581	145828	-721872	-252522	145137	-720893	58	-690	9	
	16	-303942	175481	-212458	-303776	175457	-212346	166	-24	1	
	17	-1057113	-610325	0	-1056808	-610322	0	305	3		
3	18	-313099	-180768	411162	-313025	-180780	411086	74	-12		
	19	255083	147272	729023	255048	147057	728682	-35	-215	-3	
	20	153484	88614	75215	153441	88548	75187	-43	-66		
	21	213381	123196	-99549	213218	123112	-99475	-163	-83		
	22	66228	38237	-181546	66109	38317	-181366	-119	80	1	
	23	-252581	-145828	-721872	-252522	-145137	-720893	58	690	0	
	20	-303042	-175491	-212458	-303776	-175457	-212346	166	24	1	
-	24	-505542	1000640	-212450	200	1220640	-212040	200	24		
	25	0	-261525	411162	95	-361525	411162	95	0		
	20	0	204544	720022	220	204544	720022	220	0		
	27	0	177000	729023	71	177000	729023	71	0		
4	20	0	246201	75215	10	246201	75215	10	0		
	29	0	240391	-99549	-19	240391	-99549	-19	0		
	30	0	201655	-101040	-258	201655	-101040	-200	0		
	31	0	-291000	-721072	-1109	-291000	-721072	-1139	0		
_	32	1057110	-350962	-212456	125	-350962	-212456	125	0		
	33	105/113	-610325	0	105/418	-610327	0	305	-3		
	34	313099	-180768	411162	3131/2	-180/55	411239	/4	12	-	
	35	-255083	14/2/2	729023	-255118	14/48/	729364	-35	215	3	
5	36	-153484	88614	/5215	-15352/	88680	/5243	-43	66		
	3/	-213381	123196	-99549	-213544	1232/9	-99622	-163	83	-	
	38	-66228	38237	-181546	-66347	38157	-181/25	-119	-80	-1	
	39	252581	-145828	-721872	252639	-146518	-722851	58	-690	-9	
_	40	303942	-1/5481	-212458	304108	-1/5504	-2125/0	166	-24	-1	
	41	1057113	610325	0	1057418	610327	0	305	3		
	42	313099	180768	411162	313172	180755	411239	74	-12		
	43	-255083	-147272	729023	-255118	-147487	729364	-35	-215	3	
6	44	-153484	-88614	75215	-153527	-88680	75243	-43	-66	-	
0	45	-213381	-123196	-99549	-213544	-123279	-99622	-163	-83	-	
	46	-66228	-38237	-181546	-66347	-38157	-181725	-119	80	-1	
	47	252581	145828	-721872	252639	146518	-722851	58	690	-9	
	48	303942	175481	-212458	304108	175504	-212570	166	24	-1:	
	All coils	0	0	-141	0	0	-141	0	0		

3D Model

Recoil Dimensions

RGH Recoil Detector

Spatial resolution O(100 μ m) with μ -Rwell tecnology under development for the CLAS12 high-lumi project

Time resolution O(100 ps) with scintillating technology (CLAS12 TOF) or in synergy with other projects (e.g. INFN fast tracker)

CLAS12 Highlights: DVCS

First CLAS12 measurement of DVCS beam-spin asymmetries in the extended valence region

Sensitive to GPDs and the 3D structure of the nucleon

With respect the past: - extended range in the valence region well inside the DIS regime

- superior statistics instrumental for multidimensional study & model assessment

CLAS12 Highlights: Di-hadron SIDIS

Observation of Beam Spin Asymmetries in the Process $ep \rightarrow e'\pi^+\pi^- X$ with CLAS12

Sensitive to TMDs and the strong-force correlations in hadron formation

With respect the past:

- extended range in the valence region well inside the DIS regime
- superior statistics instrumental for multidimensional study
- large acceptance for elusive correlations

NH₃ target

 $L = 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Sheet-of-flame bakground

Forward Angle Detector covers 8°-15° in polar angle

Large Angle Detector Covers 15°-24° in polar angle

