Multi-Photon Effects in Inclusive and Semi-Inclusive Deep Inelastic Scattering

(PR12+25-011, a positron proposal)

July 21, 2025

0±1

Dave Gaskell, Tyler Hague, Mike Nycz

Two Photon Exchange

0100011001011000

010110001000

0001101101001100

 G_E/G_M

$$\sigma_{R} = d\sigma/d\Omega[\varepsilon(1+\tau)/\sigma_{Mott}]$$

$$\sigma_{R} = \tau \, G_{M}^{2}(Q^{2}) + \varepsilon G_{E}^{2}(Q^{2})$$

G_E/G_M

Two-Photon Exchange in **DIS** & SIDIS

- No corollary to polarization transfer in DIS or SIDIS
- $\frac{G_E}{G_M}$ highlights the importance of understanding TPE effects in DIS
 - Small effect(s) can cause large discrepancies in measured observables
- Impact of TPE
 - L/T separations (Constant Q² and x bins)

 $\frac{d^2\sigma}{d\Omega dE'} = \Gamma[\sigma_T(x,Q^2) + \varepsilon\sigma_L(x,Q^2)]$

$$\mathbf{R} = \frac{\sigma_L(x, Q^2)}{\sigma_T(x, Q^2)}$$

Multi-Photon Effects in DIS and SIDIS

0.2

17000

0.2

45000

x =0.2

29000 - 0.2

Two-Photon Exchange in DIS & SIDIS

- No corollary to polarization transfer in DIS or SIDIS
- Elastic measurements highlight importance of understanding TPE effects in both

Effects in DIS and SIDIS

Small effect(s) can cause large discrepancies in measured observables

Impact of TPE?

Impact of TPE

L/T separations: Pion electroproduction cross section

$$\frac{d^2\sigma}{d\Omega_{\pi}dM_x} = \frac{d\sigma_T}{d\Omega_{\pi}dM_x} + \varepsilon \frac{d\sigma_L}{d\Omega_{\pi}dM_x} + \varepsilon \frac{d\sigma_{TT}}{d\Omega_{\pi}dM_x} \cos^2\varphi_{pq} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega_{\pi}dM_x} \cos\varphi_{pq}$$

- R_{SIDIS} is assumed to be the same as R_{DIS} (R_{SIDIS} = R_{DIS})
- Possible z & p_t-dependence of R_{SIDIS}?
- $R_{SIDIS}^{\pi^+} = R_{SIDIS}^{\pi^-}$?

Slide from Mike Nycz

Coulomb Corrections

Coulomb Distortion in Heavy Nuclei

Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus

- → This effect is in general NOT included in most radiative corrections procedures
- → Coulomb Corrections are perhaps more appropriately described in terms of multi-photon exchange, but Coulomb Corrections provide convenient shorthand
- Well-known effect in QE scattering relevant particularly for Coulomb sum rule
- Can be calculated in QE using DWBA → experimentalists use Effective Momentum Approximation (EMA) to apply corrections to data
- Comparisons of EMA with detailed DWBA calculations resulted in "improved EMA"

 $E_e \rightarrow E_e + V_0$ $E_e' \rightarrow E_e' + V_0$ with "focusing factor" $F^2 = (1 + V_0/E_e)^2$

 $V_0 \rightarrow (0.7-0.8)V_0, V_0=3a(Z-1)/2R$

Slide from Dave Gaskell

[Aste et al, Nucl. Phys. A, 806:191-215 (2008) Eur.Phys.J.A 26:167-178,2005, Europhys.Lett.67:753-759,2004] July 21, 2025 Multi-Photon Effects in DIS and SIDIS

DIS and SIDIS

- It is unclear if the EMA is applicable at DIS kinematics
 - This will be tested by E12+23-003!
- A natural extension of this question is if CCs in SIDIS are the same as DIS
 - DIS integrates over all hadronic final states
 - SIDIS selects for a subset of these for specific kinematics of a *piece* of the final state
- Does this selection impact CCs to the process?

DIS and SIDIS

- It is unclear if the EMA is applicable at DIS kinematics
 - This will be tested by E12+23-003!
- A natural extension of this question is if CCs in SIDIS are the same as DIS
 - DIS integrates over all hadronic final states
 - SIDIS selects for a subset of these for specific kinematics of a *piece* of the final state
- Does this selection impact CCs to the process?

This is untested! The applicability of the EMA to SIDIS is an assumption that we can and should test!

001001100001011 000100111100011000

July 21, 2025

01010101100111100

Multi-Photon Effects in DIS and SIDIS

Impact on SIDIS Data

- E12-06-104 (this year!) will extract R_LT in SIDIS data!
 - Two-photon exchange, an ε-dependent effect, will clearly impact this
- E12-24-001 formed a run group to extract R_LT in *nuclear* SIDIS data
 - Exploratory study of if R_LT is the same in SIDIS as in DIS
 - Carbon and Copper targets
 - Unclear if Coulomb Corrections will be the same in DIS and SIDIS *No Data!*
 - Coulomb Corrections are also an ε-dependent effect, will directly impact the results
- SIDIS is a key part of JLab program
 - Important to understand and constrain corrections

July 21, 2025

Equipment and Measurement

0100011001011000

010110001000

1 0 0 0 1 1 0 **1 1 C**

Required Equipment

- High Momentum Spectrometer for leptons
- Super High Momentum Spectrometer for pions
- Beam Energies
 - 4.4 GeV
 - 5.5 GeV
 - 6.5 GeV
 - 8.6 GeV
 - 10.7 GeV
- Positron beam (assuming 1 μA)
- Targets:
 - 10 cm Hydrogen
 - Empty target cell
 - 6% RL Copper Foilo 1 0 1 1 0
- 25 µA Electron beam

Electron Data

Jefferson Lab

- These measurements focus on positron to electron cross section ratios
- It is necessary to record electron data in the same run period (that is on the same targets) for the experiment to succeed
 - Dominated by target thickness but cancels in ratio if using the same targets for all data
 - TPE will have 1.7% normalization uncertainty if using past data, 0.5% with new electron data
 - CC will have 2.3% normalization uncertainty if using past data, 0.5% with new electron data
- Using data from upcoming E12-06-104 (RSIDIS), E12-24-001 (Nuclear RSIDIS), and E12-14-002 (A Dependence of R) instead of recording in the same run period dramatically reduces usefulness of data
- We assume a 25 µA electron beam only adds an additional ~15% to the beam time request

CC in SIDIS

- Complementary to E12+23-003 (CC in DIS)
- Uses double ratio to extract corrections •

 $R_{CC} =$

Projections are based on EMA calculations •

> Electron data in different run period (2.3% normalization uncertainty)

Electron data in same run period (0.5% normalization uncertainty)

/1

| m·

CC in SIDIS Kinematics

- A small number of kinematics to assess the validity of the IEMA in SIDIS
- Data recorded with π^+ final state at z=0.5
 - Higher rate than π
 - With no model of CC specific to SIDIS available, it is unclear how to disentangle effects from pion kinematics. Data is needed.
 - Using 6% R.L. copper target

 - 6% R.L. chosen to balance luminosity and radiative correction uncertainties
- Double ratio will be formed with hydrogen as opposed to deuterium
 - Make use of data already being recorded for TPE studies rather than increasing time to include another target

				Times	(hrs)
x	$Q^2 ~({ m GeV^2})$	$E_0 \; (\text{GeV})$	arepsilon	e^+	e^-
0.25	3.3	8.6	0.60	88.5	3.5
		10.7	0.33	11.5	1
0.31	3.1	6.5	0.30	252.6	10.1
		8.6	0.63	21.8	1
		10.7	0.78	5.8	1
Totals	3			380.2	16.6

•

TPE in SIDIS

- Coincident leptons in the HMS and pions in the SHMS
- We use the positron to electron ratio to extract the TPE contribution $\delta_{2\gamma}$

$$R_{2\gamma} = \frac{\sigma_{e^+}}{\sigma_{e^-}} = 1 - 2\delta_{2\gamma}$$

 $x = 0.25, Q^2 = 3.3 \text{ GeV}^2, z = 0.5$ $x = 0.25, Q^2 = 3.3 \text{ GeV}^2, z = 0.36$ 1.125 1.100 1.075 $R_{2\gamma}$ 1.050 1.025 1.000 0.975 0.950 $x = 0.31, Q^2 = 3.1 \text{ GeV}^2, z = 0.5$ $x = 0.25, Q^2 = 3.3 \text{ GeV}^2, z = 0.67$ 1.125 1.100 1.075 $R_{2\gamma}$ 1.050 1.025 1.000 0.975 0.950 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 1.0

ε

Multi-Photon Effects in DIS and SIDIS

ε

TPE in SIDIS Kinematics

					Times ((hrs)					
x	Q^2	E_0	arepsilon	z	π^+, e^+	π^+, e^-	$\mathrm{Hz}/\mathrm{\mu A}$	$\mid \pi^-, e^+$	π^-, e^-	$\mathrm{Hz}/\mathrm{\mu A}$	DIS $Hz/\mu A$
0.25	3.3	8.6	0.32	0.36	49.4	2	0.056				6.11
				0.5	36.4	1.5	0.076				
				0.67	37.8	1.5	0.073				
0.25	3.3	10.7	0.59	0.36	6.3	1	3.22				19.99
				0.5	4.7	1	0.592				
				0.67	5	1	0.56				
0.31	3.1	6.5	0.3	0.5	105.8	4.2	0.026	252.5	10.1	0.011	4.47
		8.6	0.63	0.5	8.6	1	0.322	20.1	1	0.138	19.58
		10.7	0.78	0.5	2.3	1	1.23	5.3	1	0.527	44.49
Total	S				256.3	14.2		277.9	12.1		

Many kinematics to test z, ϵ , x, and pion charge dependence DIS physics rates are low enough for concurrent measurement (maxing out at ~1.1 kHz)

TPE in DIS

- Inclusive lepton measurements in HMS
- Including additional inclusive-only kinematics ٠ as it is higher rate
- We use the positron to electron ratio to extract ٠ the TPE contribution $\delta_{2\nu}$ 1.14

$$R_{2\gamma} = \frac{\sigma_{e^+}}{\sigma_{e^-}} = 1 - 2\delta_{2\gamma}$$

Mapping large x range •

July 21, 2025

1.12 1.10 1.08 λ² μ⁷ 1.06

1.02

1.00 0.98 0.96

1.14 1.12 1.10 1.08 Z Z 1.06 U 1.04

> 1.02 1.00 0.98

TPE in DIS Kinematics

- Kinematics largely mirror E12-14-002 "A dependence of R" experiment
- These kinematics were selected to cover a large range in x to map any effect and focus on high Q² data where the effect is expected to be largest
- All settings aim to collect at least 10k events and were then rounded up to a minimum of 1 hour per setting
- Settings are divided between SHMS and HMS such that kinematics that will be compared most directly to each other are recorded in the same spectrometer

				SHMS 7	Γime (hrs)	HMS Ti	me (hrs)
x	Q^2	E_0	ε	e^+	e^-	e^+	e^-
0.1	1	6.5	0.34	1	1		
		8.6	0.66	1	1		
		10.7	0.8	1	1		
0.225	1.9	5.5	0.33	1	1		
		6.5	0.55	1	1		
		8.6	0.77	1	1		
		10.7	0.87	1	1		
0.3	1.9	4.4	0.38	1	1		
		5.5	0.63	1	1		
		6.5	0.76	1	1		
		8.6	0.88	1	1		
0.3	3	6.5	0.33	1	1		
		8.6	0.66	1	1		
		10.7	0.8	1	1		
0.4	3	5.5	0.44	2	1		
		6.6	0.63	1	1		
		8.6	0.81	1	1		
		10.7	0.89	1	1		
0.5	3	4.4	0.47			5	1
		5.5	0.7			2	1
		6.6	0.8			1	1
		8.8	0.9			1	1
0.5	5	6.6	0.3			16	1
		8.8	0.64			4	1
		11	0.79			3	1
0.6	5	5.5	0.27			20	1
		6.6	0.51			6	1
		8.8	0.75			3	1
		10.7	0.85			2	1
Totals				19	18	63	11

Systematics

Source	$\delta R/R~(\%)$	$\delta R/R~(\%)$
	point-to-point	scale
Spectrometer momentum	-	< 0.1%
Beam energy	-	< 0.1%
$ heta_{spec}$	-	< 0.1%
Charge	0.35%	-
Target Boiling	-	0.1%
Total dead time	0.15%	0.14%
Detector efficiency	0.11%	_
Charge Symmetric Background	-	-
Pion background	0.2%	-
Radiative Corrections	_	0.5%
Acceptance	0.2%	-
Cryotarget wall subtraction	-	-
Total	0.49%	0.56%

Coulomb Correction Double Ratio Lower uncertainties due to cancellations in double ratio

001001100001011 0010011100001100

Source	$\delta R/R~(\%)$	$\delta R/R \ (\%)$
	point-to-point	scale
Spectrometer momentum	-	< 0.1%
Beam energy	-	< 0.1%
$ heta_{spec}$	$0.15 extrm{-}0.46\%$	< 0.1%
Charge	0.35%	2%
Target Boiling	-	0.1%
Total dead time	0.15%	0.14%
Detector efficiency	0.11%	-
Charge Symmetric Background	-	-
Pion background	0.2%	-
Radiative Corrections	-	0.5%
Acceptance	$0.1 ext{-} 0.14\%$	-
Cryotarget wall subtraction	-	-
Total	$0.48 extrm{-}0.65\%$	2.07%

TPE Ratios

Scale uncertainty dominated by total charge measurement Unser does not work for low currents 2% based on past injector faraday cup measurements

Discussion of Specific Questions from the readers, TAC, and Theory Review

E12-06-104, E12-24-001, and E12-14-002 Running Beam time overhead requests

- "Have these experiments run or been scheduled to run?"
 - E12-06-104 and E12-24-001 will be starting imminently
 - E12-14-002 has not been scheduled yet (originally anticipated to run FY26). Beam time request was submitted and approved in September 2024. It may run in FY27.
- "What is the impact on the proposed measurement if only a fraction of these other experiments produce useful data?"
 - The readers correctly point out that we state that the data collected in these experiments are necessary for parameterizing the charge symmetric background (CSB) for this proposal
 - If the data for CSB is not adequately recorded in these experiments, we will need to record CSB data in this experiment
 - While we certainly hope for the success of these experiments beyond just our need for their CSB data, we will be able to know of any issues well in advance of the planned positron program (Expected in ~10 years?) in order to adjust our plans accordingly
- "There are assumptions that the time estimated for polarity change and beam energy changes are underestimated"
 - We have 5 pass changes for each beam polarity and we have assumed 8 hours per pass change to mirror the conditionally approved experiment E12+23-003 (CC in DIS)
 - If we modify this to 1 PAC day per pass change, our total beam time request would increase to 1560.6 hours (65 days)
 - We have not included the time for a beam polarity change in our request as there has been no guidance for what to assume in the Ce+BAF era. If we assume 1 PAC day, in addition to the other modifications our request would be 1584.6 hours (66 days)

Pion Rates and Beam Current Measurement

- "We concur with the TAC reviewer on the potential rate and trigger issues with 25 uA beam current and simultaneously collecting both DIS and SIDIS data. Can you provide numbers for the relevant rates and address the possible pre-scaling issues?"
 - Raw particle rate tables and trigger rate tables, with details on their calculation are in our backup slides
 - The sum of the concurrent SIDIS and DIS rates are expected to be below 4 kHz without prescaling
 - Should dead time be an issue due to multiple triggers, we will prescale the DIS trigger as the time request at these kinematics is driven by the SIDIS rate
- "Can you produce a summary table of expected HMS and SHMS rates for electrons and pions?"
 - Some dedicated inclusive DIS kinematics will require substantial prescaling to keep the trigger rate below 4 kHz
 - Due to our decision to request no less than 1 hour per kinematic, these prescale values will not prevent us from reaching our desired statistics
- "The 2% normalization uncertainty on the positron current is the largest uncertainty, but in the proposal it is suggested that there are ongoing discussions on how to reduce this."
 - There are preliminary discussions of building a Faraday cup for Hall C in the positron era that would allow a 0.1-0.5% ratio of beam current measurements depending on the power load from the beam
 - Further details can be found in the backup slides

Theory Review

This proposal aims to study two-photon exchange effects in deep-inelastic scattering and semi-inclusive deep-inelastic scattering (SIDIS) of electrons and positrons from hydrogen in Hall C, as well as Coulomb correction effects in the SIDIS of e^{\pm} from hydrogen and Cu. One of the motivations for this experiment is to provide more reliable input for the analysis and interpretation of measurements of the ratio $R = \sigma_L/\sigma_T$ of longitudinal to transverse cross sections using the Rosenbluth, or longitudinal-transverse (LT) separation, technique. LT separations are known to be very sensitive to ε -dependent effects, and two-photon exchange effects, which can also dependent on ε , can modify the effective slope in the Rosenbluth extractions, thereby significantly affecting the extracted R values is the effects are large.

Similarly, in studies of the nuclear dependence of R_A , distortions of the ε dependence arising from Coulomb corrections can affect extractions of the longitudinal structure functions of nuclei. The proposed data will be an important step towards constraining these effects and limiting the uncertainty in transverse and longitudinal structure functions.

0100001010101100

001001100001011 001001110000110

July 21, 2025

Summary

- Using positron and electron beams we will measure two-photon exchange effects in DIS and SIDIS and coulomb corrections in SIDIS
- These are critical to the interpretation and analysis of past and future JLab data

................

QUESTIONS?

1011000111111

Backup

29

Pion Rates

Jul

- Raw pion rates for the dedicated DIS running is to the right. For the SIDIS and concurrent DIS is below. Calculated using Wiser parameterization
- The HMS and SHMS Cherenkov *cut* efficiencies are typically greater than 99%
- The very high pion rates necessitate the inclusion of the Cherenkov in the trigger
- Electron/Positron rates are below the ideal 4kHz threshold, pre-scaling will be used should the Cherenkov not sufficiently reduce the trigger rate due to pions (see next slide)

			DIS							
	x	Q^2	E_0	e^+ Rate	π^+ Rate	e^- Rate	π^- Rate	π/e		0.6
		${\rm GeV^2}$	GeV	Hz at $1\mu A$	Hz at $1\mu A$	Hz at $25\mu A$	Hz at $25 \mu {\rm A}$			0.0
	0.25	3.3	8.6	$6.11e{+}00$	5.79e + 02	1.53e+02	1.45e + 04	95		
			10.7	2.00e+01	2.18e+02	$5.00e{+}02$	5.45e + 03	11		
	0.31	3.1	6.5	4.47e + 00	5.39e + 02	1.12e+02	1.35e+04	121		
y 2	1, 2025		8.6	$1.96e{+}01$	1.12e + 02	$4.90e{+}02$	2.80e+0 M ul	ti-P\$hotor	n Effects in DIS	and SIDIS
			10.7	$4.45e{+}01$	5.65e + 01	1.11e+03	1.41e + 03	2		

			Particle Rate	es - DIS only	Kinematics		
x	Q^2	E_0	e^+ Rate	π^+ Rate	e^- Rate	π^- Rate	π/e
	${ m GeV^2}$	GeV	Hz at $1\mu A$	Hz at $1\mu A$	Hz at $25\mu A$	Hz at $25\mu A$	
0.1	1	6.5	5.28e + 01	1.68e + 04	1.32e+03	4.20e + 05	319
		8.6	$2.33e{+}02$	1.19e + 04	5.81e + 03	$2.98\mathrm{e}{+05}$	52
		10.7	5.38e + 02	$8.58e{+}03$	1.34e + 04	$2.14\mathrm{e}{+05}$	16
0.225	2	5.5	5.90e+00	4.03e+03	1.48e+02	1.01e+05	683
		6.5	1.65e+01	2.64e + 03	4.13e+02	6.60e + 04	160
		8.6	5.26e + 01	1.46e + 03	1.32e + 03	$3.65e{+}04$	28
		10.7	1.10e+02	1.03e+03	$2.75e{+}03$	$2.58e{+}04$	10
0.3	1.9	4.4	4.33e+01	2.11e+03	1.08e+03	5.28e + 04	49
		5.5	1.24e+02	1.17e + 03	$3.11e{+}03$	$2.92e{+}04$	10
		6.5	$2.54e{+}02$	8.44e + 02	6.36e + 03	$2.11e{+}04$	4
		8.6	$6.45e{+}02$	5.56e + 02	1.61e+04	$1.39e{+}04$	<1
0.3	3	6.5	2.05e+01	1.57e + 03	5.12e + 02	3.92e + 04	77
		8.6	8.65e + 01	6.04e + 02	2.16e+03	$1.51e{+}04$	7
		10.7	1.97e+02	3.67e + 02	$4.92e{+}03$	$9.18e{+}03$	2
0.4	3	5.5	2.21e+01	5.46e + 02	5.53e+02	1.36e + 04	25
		6.5	5.07e + 01	3.17e + 02	1.27e + 03	$7.92e{+}03$	7
		8.6	1.42e+02	$1.71e{+}02$	3.56e + 03	$4.28e{+}03$	2
		10.7	$2.83e{+}02$	1.26e + 02	7.07e + 03	$3.15\mathrm{e}{+03}$	<1
0.5	3	4.4	1.87e+00	7.37e + 01	4.68e + 01	1.84e + 03	40
		5.5	4.96e + 00	2.86e + 01	1.24e + 02	$7.15e{+}02$	6
		6.5	8.71e+00	1.79e + 01	2.18e+02	4.47e + 02	3
		8.6	2.00e+01	9.29e + 00	5.00e + 02	2.32e + 02	<1
		10.7	4.09e+01	4.06e + 00	1.02e+03	$1.01e{+}02$	<1
0.5	5	6.5	5.51e-01	5.70e + 01	1.38e+01	1.42e + 03	104
		8.6	2.28e+00	2.10e+00	5.69e + 01	$5.25e{+}01$	<1
		10.7	5.13e+00	1.16e + 00	1.28e + 02	$2.90\mathrm{e}{+01}$	<1
0.6	5	5.5	5.98e-01	2.34e + 01	1.49e+01	$5.85e{+}02$	40
		6.5	1.58e+00	$7.11e{+}00$	$3.94e{+}01$	$1.78e{+}02$	5
		8.6	4.81e+00	$2.10e{+}00$	1.20e+02	$5.25e{+}01$	<1
		10.7	9.88e + 00	$1.16e{+}00$	2.47e+02	$2.90e{+}01$	<1

Includes prescaled lepton rate

Pion Rates

•

We plan to use the ELREAL trigger

- Designed to reduce pion background without impacting electron efficiency
- Requires, in addition to 3 out of 4 hodoscopes:
 - [Signal in the Cherenkov *and* PRLO (low threshold preshower trigger)] *Or* [PRHI (high threshold preshower trigger)]
- XEM2 data shows this trigger reduces pion background by 50-95%
 - High reduction -> Momentum below Cherenkov pion threshold (4.3 GeV) and large angles
 - Low reduction -> Forward angles, high momentum
- To be conservative, to the right we estimate a 50% reduction for settings above the Cherenkov pion threshold and a 75% reduction for those below
- Statistics goals still met in requested time

				Estimated	Trigger Ra	tes - DIS only Ki	nematics		
					Positrons			Electrons	
x	Q^2	E_0	E'	π^+ Rate	Prescale	Prescaled Rate	π^- Rate	Prescale	Prescaled Rate
	${ m GeV^2}$	${\rm GeV}$	${\rm GeV}$	ELREAL Hz		Hz (total)	ELREAL Hz		Hz (total)
0.1	1	6.5	1.2	4.20e+03	2	2.13e+03	1.05e+05	33	3.22e + 03
		8.6	3.3	2.98e+03	1	$3.21e{+}03$	7.45e+04	33	2.43e + 03
		10.7	5.4	4.29e + 03	2	$2.41e{+}03$	1.07e+05	33	3.65e + 03
0.225	2	5.5	1	1.01e+03	1	1.02e+03	2.53e+04	9	2.83e + 03
		6.5	2	6.60e + 02	1	6.77e + 02	1.65e+04	5	3.38e + 03
		8.6	4.1	7.30e+02	1	7.83e + 02	1.83e+04	5	3.92e + 03
		10.7	6.2	5.15e+02	1	6.25e + 02	1.29e + 04	5	3.13e + 03
0.3	1.9	4.4	1	5.28e + 02	1	5.71e + 02	1.32e+04	5	2.86e + 03
		5.5	2.1	2.93e+02	1	4.17e + 02	7.30e + 03	3	3.47e + 03
		6.5	3.1	2.11e+02	1	4.65e + 02	5.28e + 03	3	3.88e + 03
		8.6	5.2	2.78e+02	1	$9.23e{+}02$	$6.95e{+}03$	9	2.56e + 03
0.3	3	6.5	1.2	3.93e+02	1	4.14e + 02	9.80e + 03	3	3.44e + 03
		8.6	3.3	1.51e+02	1	2.38e+02	3.78e + 03	2	2.97e + 03
		10.7	5.4	1.84e+02	1	$3.81e{+}02$	4.59e + 03	3	3.17e + 03
0.4	3	5.5	1.5	1.37e+02	1	1.59e + 02	3.40e+03	1	$3.95e{+}03$
		6.5	2.5	7.93e+01	1	1.30e+0.2	1.98e + 03	1	3.25e + 03
		8.6	4.6	8.55e+01	1	2.28e + 02	2.14e+03	2	2.85e + 03
		10.7	6.7	6.30e+01	1	3.46e + 02	1.58e + 03	3	2.88e + 03
0.5	3	4.4	1.2	1.93e+01	1	2.12e+01	4.60e+02	1	5.07e + 02
		5.5	2.3	7.15e+00	1	$1.21e{+}01$	1.79e + 02	1	3.03e + 02
		6.5	3.3	4.48e+00	1	1.32e + 01	1.12e+02	1	3.30e + 02
		8.6	5.4	4.65e+00	1	2.47e + 01	1.16e+02	1	6.16e + 02
		10.7	7.5	2.03e+00	1	4.29e + 01	5.05e+01	1	1.07e + 03
0.5	5	6.5	1.2	1.43e+01	1	1.49e + 01	3.55e+02	1	3.69e + 02
		8.6	3.3	$0.53e{+}00$	1	2.81e+00	1.31e+01	1	7.00e+01
		10.7	5.4	0.58e+00	1	5.71e + 00	1.45e+01	1	1.43e+02
0.6	5	5.5	1.1	0.59e+00	1	1.19e+00	1.46e+02	1	1.61e+02
		6.5	2.1	1.78e+00	1	$3.36e{+}00$	4.45e+01	1	$8.39e{+}01$
		8.6	4.2	1.05e+00	1	5.86e + 00	2.63e+01	1	1.46e + 02
		10.7	6.3	0.58e+00	1	$1.05e{+}01$	1.45e+01	1	2.62e + 02

	Estimated DIS Trigger Rates - Simultaneous Kinematics											
					Positrons	3		Electrons	3			
x	Q^2	E_0	E'	π^+ Rate	Prescale	Prescaled Rate	π^- Rate	Prescale	Prescaled Rate			
	${ m GeV^2}$	GeV	GeV	ELREAL Hz		Hz (total)	ELREAL Hz		Hz (total)			
0.25	3.3	8.6	1.6	1.45e+02	1	$1.51e{+}02$	3.63e + 03	1	3.78e + 03			
		10.7	3.7	1.09e+02	1	$1.29e{+}02$	2.73e + 03	1	$3.23e{+}03$			
0.31	3.1	6.5	1.1	1.35e+02	1	1.39e + 02	3.38e + 03	1	3.49e + 03			
		8.6	3.3	2.80e+01	1	4.76e + 01	7.00e+02	1	$1.19e{+}03$			
		10.7	5.4	2.83e+01	1	7.28e + 01	7.05e+02	1	1.82e + 03			

Multi-Photon Effects in DIS and SIDIS

Pion Rates

- The sum of the trigger rates for DIS and SIDIS is less than the desired 4 kHz maximum for all kinematics without prescaling
- Should the simultaneous triggering cause excessive dead time, we will prescale the DIS trigger
- The beam time requests at these kinematics
 are driven by the much lower SIDIS rate, so
 our statistics goals for DIS can still be met in the event that we must introduce a prescale factor

	Estimated Trigger Rates - SIDIS and DIS											
				Positr	rons	Electr	rons					
x	Q^2	E_0	z	SIDIS Rate	DIS Rate	SIDIS Rate	DIS Rate					
	${ m GeV^2}$	GeV		Hz	$_{\rm Hz}$	$_{\rm Hz}$	$_{\rm Hz}$					
0.25	3.3	8.6	0.36	5.62e-02	1.51e+02	1.41e+00	3.78e + 03					
			0.5	7.63e-02		$1.91e{+}00$						
			0.67	7.35e-02		$1.84e{+}00$						
0.25	3.3	10.7	0.36	4.38e-01	1.29e + 02	1.09e+01	3.23e + 03					
			0.5	5.92e-01		$1.48e{+}01$						
			0.67	5.60e-01		$1.40e{+}01$						
0.31	3.1	6.5	0.5	2.63e-02	1.39e+02	6.56e-01	3.49e + 03					
		8.6	0.5	3.22e-01	$4.76e{+}01$	$8.05\mathrm{e}{+00}$	$1.19e{+}03$					
		10.7	0.5	1.23e+00	$7.28\mathrm{e}{+01}$	$3.06\mathrm{e}{+01}$	$1.82\mathrm{e}{+03}$					

Positron Beam Current Measurement

- As it stands, the Hall C unser cannot measure the currents that will be available for positrons
- In our proposal, we have assumed a 2% normalization uncertainty in line with past experiments that measured the beam current with the injector Faraday cup
- Dave Mack has outlined a Faraday cup design that could be built for the Hall C positron era
 - 30 kW max continuous power load
 - Insertable
 - Theoretically capable of 0.1% precision on the *ratio* of currents, even with significant time separation
 - Continuous power load limit leads to a current limit of 3µA*11GeV/E_beam
 - For currents greater than this, the Faraday cup could not provide continuous monitoring but could record a ~10 second beam in order to calibrate the BCMs
 - Would yield an uncertainty of ~0.5% in the ratio, limited by BCM stability
- To our knowledge, the design is very preliminary
- We are hopeful that such a device will be created, but do not believe it would be fair to assume these dramatically improved uncertainties in our projections at this point

More Kinematic Details – SIDIS TPE

					HMS		SI	IMS
	x	Q^2	E_0	\boldsymbol{z}	$E_{e'}$	$ heta_{e'}$	E_{π}	$ heta_\pi$
	0.25	3.3	8.6	0.36	1.6	28.7°	2.6	7.9°
				0.5	1.6	28.7°	3.6	7.9°
				0.67	1.6	28.7°	4.9	7.9°
	0.25	3.3	10.7	0.36	3.7	16.7°	2.6	10.3°
				0.5	3.7	16.7°	3.6	10.3°
				0.67	3.7	16.7°	4.9	10.3°
(0.31	3.1	6.5	0.5	1.1	37.7°	2.8	9.2°
			8.6	0.5	3.3	19.2°	2.8	13°
			10.7	0.5	5.4	13.4°	2.8	14.7°

Table 3: The kinematic and spectrometer settings for SIDIS TPE studies. The HMS will be set to detect the scattered beam lepton. The SHMS will be set to detect the final hadronic state pion. For all kinematics, $\theta_{\pi q} = 2^{\circ}$. All kinematics will be recorded with a π^+ in the final state. The three data points at x = 0.31 and $Q^2 = 3.1 \text{ GeV}^2$ will also be recorded for a π^- final state. All lepton kinematics will be simultaneously recorded with an inclusive trigger in the HMS for the DIS TPE studies.

0100 010010101100

Jefferson	Lab

	x	Q^2	E_0	ε	$E_{e^{i}}$	$\theta_{e^{\cdot}}$
More Kinematic Details – DIS TPF	0.25	3.3	8.6	0.32	1.6	28.7°
More Amematic Details – Dio II L			10.7	0.59	3.7	16.7°
-	0.31	3.1	6.5	0.3	1.1	37.7°
			8.6	0.63	3.3	19.2°
c and O^2 coverage			10.7	0.78	5.4	13.4°
E and Q ² coverage	0.1	1	6.5	0.34	1.2	20.9°
$- \pm x = 0.10$			8.6	0.66	3.3	10.8°
$6 \bigvee_{x=0.25}^{x=0.225}$			10.7	0.8	5.4	7.6°
x=0.31	0.225	1.9	5.5	0.33	1	34.2°
\mathbf{x}			6.5	0.55	2	22°
			8.6	0.77	4.1	13.3°
			10.7	0.87	6.2	<u>9.7°</u>
	0.3	1.9	4.4	0.41	1	37.9°
			5.5	0.66	2.1	23.3°
			6.5	0.78	3.1	17.6°
- × × × -			8.6	0.89	5.2	11.8°
	0.3	3	6.5	0.33	1.2	36.6°
			8.6	0.66	3.3	18.8°
0.0 0.2 0.4 0.6 0.8 1.0	0.4	0	10.7	0.8	0.4	13.1°
3	0.4	3	0.0 6 E	0.48	1.0	30.1
			0.0	0.00	2.0	24.0 15.9°
$\sim 10^2$			10.7	0.85	67	11.7°
x and Q ² coverage	0.5	3	4.4	0.3	1.2	44.2°
★ x=0.10	0.0	9	5.5	0.7	2.3	28.2°
6 - × ×=0.225 ×=0.25			6.5	0.8	3.3	21.5°
x=0.31			8.6	0.9	5.4	14.6°
\sim			10.7	0.94	7.5	11.1°
	0.5	5	6.5	0.31	1.2	47.8°
Ŭ – O –			8.6	0.65	3.3	24.3°
			10.7	0.8	5.4	17°
	0.6	5	5.5	0.32	1.1	55.2°
			6.5	0.55	2.1	35.6°
- *			8.6	0.78	4.2	21.6°
			10.7	0.87	6.3	15.7°
0.0 0.2 0.4 0.6 0.8 1.0 Table 4: Kinematics for DIS T	PE stu	dies. '	The fir	st two	x, Q^2	entries are taken simultaneously w
July 21, 2025 X Multinet spin profile free stain and shared st	$\mathbf{P}_{\mathrm{rec}}$	orded	separa	tely wi	th x =	= 0.5 and above in the HMS and below
x = 0.5 in the SHMS.						

SIDIS TPE Projections

E=10.6 GeV, x=0.31, Q²=2.5 GeV², and z=0.5 From S. Lee <u>2024 PWG presentation</u>

001001100001011

0.02 0.02 0.01 0.01 0.00 δ^{TPE} δ^{TPE} -0.01 0.00 -0.02 -0.01 -0.03-0.04 0.0 0.2 0.4 0.6 0.8 0.2 0.3 0.6 E ν 0.04 0.01 0.03 0.02 δ^{TPE} 0.00 δ^{TPE} 0.01 -0.01 0.0 -0.01 -0.02 -0.02 0.8 1.0 0.0 0.2 Ρτ

E=10.6 GeV, x=0.31, Q²=2.5 GeV², and z=0.7 From S. Lee and A. Afanasev <u>arXiv:2504.17123</u>

DIS TPE Projections – Using Elastic Hard TPE Calculations

DIS TPE

The magnitude of TPE effects in both figures are calculated using a prescription a prescription from Ref. [43],

$$\delta_{2\gamma} = -0.069 \left(1 - \varepsilon\right) \ln \left(0.394 \text{GeV}^{-2} Q^2 + 1\right).$$
(16)

This equation is based on a fit to world elastic data and assumes the full form factor discrepancy is attributable to "hard" TPE. The fit also assumes that there is a Q^2 dependent piece that incorporates quark degrees of freedom for high Q^2 scattering. We have opted to use this fit in the absence of any available calculations for TPE in DIS.

[43] Andrei Afanasev et al. Radiative corrections: from medium to high energy experiments. *Eur. Phys. J. A*, 60(4):91, 2024.

