LD2510: Al for Nuclear Physics

PI: Robert Edwards

Co-Pls: Diana McSpadden, Kostas Orginos, Nobuo Sato

Jefferson Lab

Yr1 Q1: Attempted to secure future funding (Beyond LDRD)

FOA:

- DOE/NP released an FOA "AI in Nuclear Physics"
- JLab staff submitted LOI(s) to this call in FY25Q1

Potential future directions for proposals:

- Application of Attention technologies for LGT simulations, JLab Expt & Theory data analysis
- Development of Al Agents for Nuc. Theory research

Artificial Intelligence and Machine Learning Applied to Nuclear Science and Technology

Notice of Funding Opportunity (NOFO) Number: DE-FOA-0003458

Our LOI(s) were not encouraged to move forward

- Took time away from current LDRD
- Was valuable learning experience
- Project realigned towards delivering most impact on NP

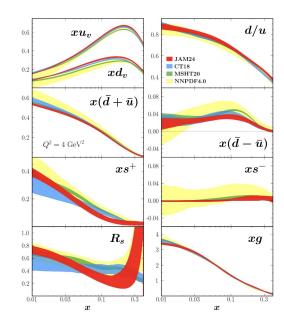
Two main thrusts - text and inverse functions

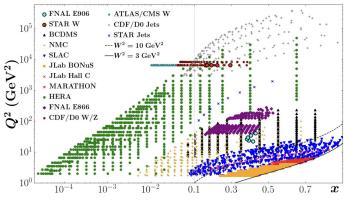
Thrust: Text - Use LLMs to interpret questions for a transformation

Query: "What is the maximum range of <kinematic variable> in the reaction <reaction name> data coverage"

Thrust: Transformation - Use "Attention Technology" to transform data

E.g., PDFs to DIS proton cross sections \times DIS proton cross sections to PDFs

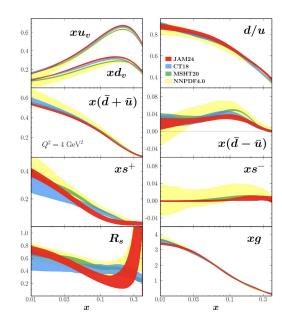

Outcome: put the two together - greatly facilitates data impact studies


Application #1: Use LLMs as translators between parton level information and observable level information

Translate PDFs to DIS proton cross sections Input (11, 100, 100)
Output (100,100)

Translate DIS proton cross sections to PDFs Input (100,100)
Output (11, 100, 100)

Goal: use LLMs as an inverse function Q: what if we give less/more DIS cross sections across phase space



Application #2: Use LLMs as translators between parton level information and event level information

Translate PDFs to DIS events Input (11, 100, 100)
Output (10000,140,10)

Translate DIS events to PDFs Input (10000,140,10)
Output (11, 100, 100)

Goal: use LLMs as an inverse function Q: how does the answer change with the number of events?

Potential Application: infer intermediate steps in decays

	PYTHIA	Event Listing	(complete	e event	t)									
no	id	name	me status mothers		others	daughters		colours		p_x	p_y	p_z	е	m
0	90	(system)	-11	0	0	0	0	0	0	0.000	-0.000	0.001	104.881	104.881
1	2212	(p+)	-12	0	0	7	0	0	0	0.000	0.000	52.437	52.445	0.938
2	11	(e-)	-12	0	0	4	0	0	0	0.000	-0.000	-52.436	52.436	0.001
3	2	(u)	-21	7	7	5	6	101	0	0.000	0.000	11.136	11.136	0.000
4	11	(e-)	-21	2	0	5	6	0	0	0.000	0.000	-52.437	52.437	0.000
5	2	(u)	-23	3	4	8	8	101	0	-5.404	-2.044	10.212	11.738	0.330
6	11	e-	23	3	4	0	0	0	0	5.404	2.044	-51.516	51.839	0.001
7	2	(u)	-61	1	0	3	3	101	0	0.151	0.403	9.991	10.000	0.000
8	2	(u)	-62	5	5	10	15	101	0	-5.193	-1.619	9.023	10.541	0.330
9	2103	(ud_1)	-63	1	0	10	15	0	101	-0.211	-0.425	42.492	42.502	0.771
10	213	(rho+)	-83	8	9	16	17	0	0	-1.718	-0.470	5.220	5.708	1.470
11	-213	(rho-)	-83	8	9	18	19	0	0	-0.919	-0.109	2.883	3.146	0.856
12	111	(pi0)	-83	8	9	24	25	0	0	-2.165	-0.944	4.497	5.082	0.135
13	321	K+	84	8	9	0	0	0	0	-0.066	-0.173	1.300	1.403	0.494
14	3224	(Sigma∗+)	-84	8	9	20	21	0	0	-0.279	-0.293	14.130	14.200	1.357
15	-213	(rho-)	-84	8	9	22	23	0	0	-0.257	-0.055	23.486	23.504	0.872
16	211	pi+	91	10	0	0	0	0	0	0.251	-0.048	0.662	0.723	0.140
17	111	(pi0)	-91	10	0	26	27	0	0	-1.969	-0.422	4.558	4.985	0.135
18	-211	pi-	91	11	0	0	0	0	0	0.089	0.135	0.550	0.590	0.140
19	111	(pi0)	-91	11	0	28	30	0	0	-1.008	-0.245	2.333	2.556	0.135
20	3122	(Lambda0)	-91	14	0	31	32	0	0	-0.200	-0.214	13.389	13.439	1.116
21	211	pi+	91	14	0	0	0	0	0	-0.079	-0.079	0.741	0.762	0.140
22	-211	pi-	91	15	0	0	0	0	0	-0.091	0.100	21.409	21.410	0.140
23	111	(pi0)	-91	15	0	33	34	0	0	-0.166	-0.156	2.077	2.094	0.135
24	22	gamma	91	12	0	0	0	0	0	-0.353	-0.101	0.679	0.772	0.000
25	22	gamma	91	12	0	0	0	0	0	-1.813	-0.843	3.819	4.310	0.000
26	22	gamma	91	17	0	0	0	0	0	-0.680	-0.083	1.592	1.733	0.000
27	22	gamma	91	17	0	0	0	0	0	-1.289	-0.339	2.966	3.252	0.000
28	22	gamma	91	19	0	0	0	0	0	-0.709	-0.117	1.562	1.719	0.000
29	11	e-	91	19	0	0	0	0	0	-0.056	-0.016	0.113	0.127	0.001
30	-11	e+	91	19	0	0	0	0	0	-0.242	-0.111	0.657	0.710	0.001
31	2212	p+	91	20	0	0	0	0	0	-0.097	-0.121	10.553	10.596	0.938
32	-211	pi-	91	20	0	0	0	0	0	-0.103	-0.093	2.836	2.843	0.140
33	22	gamma	91	23	0	0	0	0	0	-0.005	0.016	0.040	0.043	0.000
34	22	gamma	91	23	0	0	0	0	0	-0.161	-0.171	2.037	2.051	0.000
			Charge	sum:	0.000		Moi	mentum	sum:	-0.000	-0.000	0.000	104.882	104.882

Budget

AI for Nuclear Physics R. Edwards (LD2510) WBS 1.02.LD.009 (Loaded \$k)

Edwards (Theory): 20% years 1 & 2 McSpadden (CST): 40% years 1 & 2 Sato (Theory): 5% years 1 & 2 Orginos (Theory): 20% year 1 only Goldenberg (CST):

57% year 1 (FY25)

80% year 2 (FY26)

Travel: 3K/year for years 1 & 2

