# TTC High Q WG meeting -

### Quench studies 9 cell cavities for LCLS-II prototype – Preliminary as of Feb 25<sup>th</sup> 2015

Round 1 - baseline recipe Round 2 - rework to raise quench fields

Ari D. Palczewski, SRF Scientists Jefferson Lab, USA 02/26/2014





### **Doping treatment: small variation from standard XFEL/ILC** processing recipe



Thanks - Anna Grassellino FNAL





Welding

BCP

HPR

# **Doping example and analysis**



Time (around N2 injection window)





### Round 1 - 9 cell tests

#### Nitrogen @ 26mtorr - 20min, Diffusion @ vacuum 30min + 16 microns EP

LCLS-II baseline 9 cell RF data 2.0K - JLab



Eacc (MV/m)





## **Reason for round 2**

- 4 of 6 cavities "made spec", while one had a lower than expected Q0 (FE), and one quench at low field (TB9AES034)
- Quench fields too close to operating gradients, so all cavities would be reworked with new lighter doping to raise quench fields (single cell results from FNAL, JLab, Cornell and multi-cell results from FNAL results suggest this)

| Cav ID    | Round 1<br>parameters | Surface reset | Round 2<br>parameters |
|-----------|-----------------------|---------------|-----------------------|
| TB9AES031 | N20 A30 + EP16        | none          | +EP10                 |
| TB9AES032 | N20 A30 + EP16        | EP50          | N2 A6 EP5             |
| TB9AES033 | N20 A30 + EP16        | EP50          | N2 A6 EP5             |
| TB9AES034 | N20 A30 + EP16        | CBP100 + EP50 | N2 A30 EP10           |
| TB9AES035 | N20 A30 + EP16        | EP50          | N2 A6 EP5             |
| TB9AES036 | N20 A30 +EP16         | EP50          | N2 A6 EP5             |





### Round 2 - 9 cell tests (partial)







#### Quench Mode Analysis TB9AES031



Same quench location in Pi mode for both tests





### **Optical inspection TB9AES031**

Cell 7

Cell 8



No defect found

### No defect found

Cell 6



~ cell 6 quench location after second EP

Inspection Courtesy of R. L. Geng before second EP





#### Quench Mode Analysis TB9AES033



removal - maybe





# **Optical inspection TB9AES033**

Cell#8, fusion zone, inside OST circle angle = 280 degree

Cell#6 quench site angle=190 degree

**Cell#9 quench site**, Machining line edge angle=170 degree



Cell#8, fusion zone angle=150 degree No defect found stain away from quench (benign)

No defect found

Possible stain





Inspection Courtesy of R. L. Geng before EP





#### Quench Mode Analysis TB9AES035



No clear pattern for quench location, appears random after bulk reset and re-dope





# No inspection done after either round and in helium vessel now





#### Quench Mode Analysis TB9AES034







# **Optical inspection and T-map TB9AES034**







Most outstanding feature 200 micron dia. Deep pit Leading candidate defect for quench at 11 MV/m during vertical test

Multiple other defects found – sent for CBP  $\sim$  120micron

### Inspection Courtesy of R. L. Geng before EP





# **Conclusions - Preliminary with N=1,2 data**

- Large pit like defects will show a larger Q-drop at lower quench fields than standard cavities (TB9AES034)
- For heavy doping quench location appears to be random at this point, especially compared to un-doped cavities – i.e. no defects, multiple quench location at ~ same field (TB9AES033, TB9AES033)
- Bulk re-rest of surface appears randomize quench location after re-doping (TB9AES035, TB9AES033?)
- Light doping after reset produces a higher quench field on average (TB9AES033, TB9AES035)
- Light EP after baseline heavy doping raised the quench field (small amount) but not likely to change quench location (TB9AES031)





### Side note - Re-doping Furnace data



Outside of cavity already was heavily doped so absorption rate in second round is less (first two minutes)



