

Cornell High-Q update

Fumio Furuta, Daniel Gonnella, Daniel Hall, Mingqi Ge, Matthias Liepe

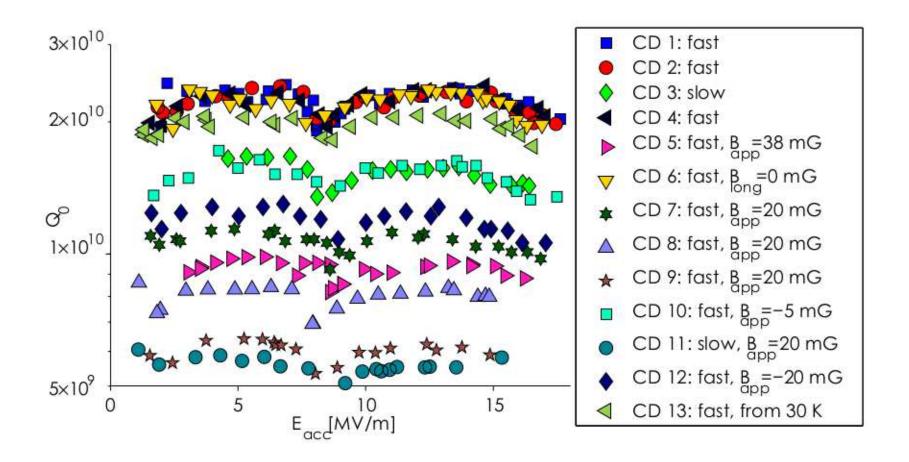
Cornell University

TTC High-Q Working Group Meeting 26Feb2015

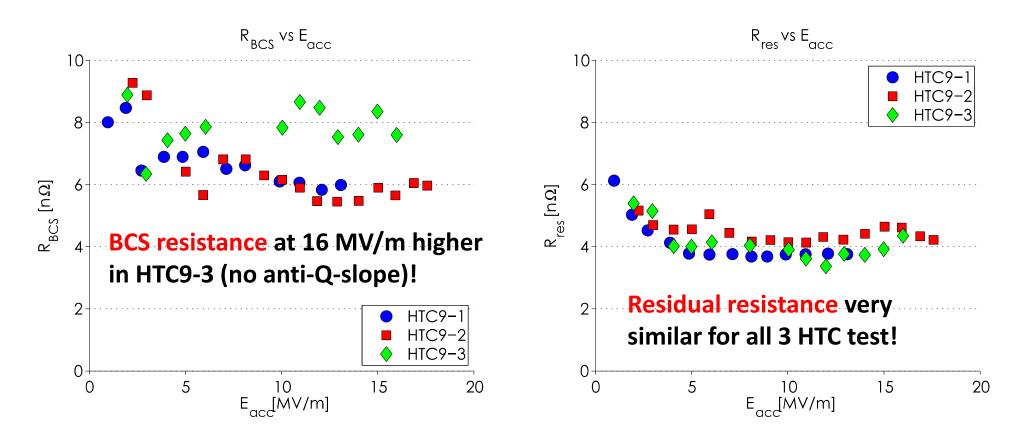
HTC9-3 results at Cornell AES018

Short history

- □ Processed and VT at Cornell.
- □ Sent to FNAL, helium jacket weld.
- HTS test at FNAL.
- □ Sent to Cornell, re-HPR and reassembled.
- □ Installed 50 turns of wire for solenoid on helium jacket.
- □ HTC test at Cornell.



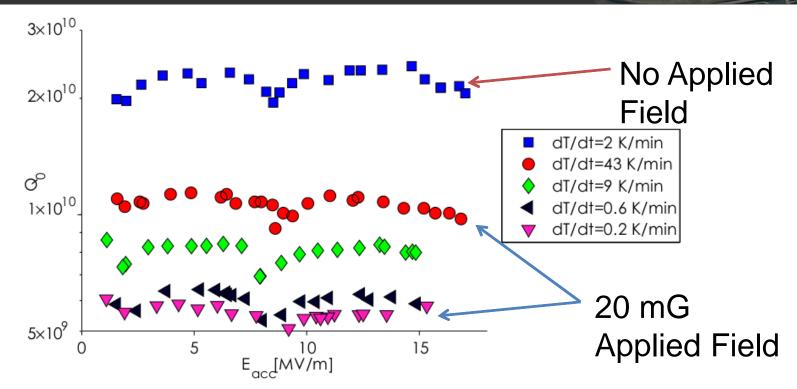
HTC9-3, 2.0 K Q vs E


HTC9-3, Testing Overview


Cool Dow n	Solenoi d On	Max ∆T _{horiz} [K]	Max ΔT _{vert} [K]	B _{long} (10 K) [mG]	B _{perp} (10 K) [mG]	Q ₀ (2 K, 16 MV/m)	R _{res} (16 MV/m) [nΩ]
1	No	N/A	N/A	6.2	-0.7	2.2x10 ¹⁰	3.7
2	No	19.1	76.9	7.1	3.4	2.1x10 ¹⁰	4.4
3	No	0.3	2.7	-2.5	3.1	1.5x10 ¹⁰	9.9
4	No	4.4	40.1	5.7	1.8	2.1x10 ¹⁰	3.9
5	Yes	32.9	44.0	38.2	3.0	8.8x10 ⁹	22.7
6	No	6.7	69.6	0.03	2.5	2.0x10 ¹⁰	4.4
7	Yes	9.9	61.8	20.0	4.5	1.0x10 ¹⁰	18.9
8	Yes	3.9	38.2	20.0	0.5	8.0x10 ⁹	26.4
9	Yes	1.9	16.3	20.0	-0.5	5.9x10 ⁹	36.5
10	Yes	4.6	57.1	Approx 5.0	2.5	1.4x10 ¹⁰	9.8
11	Yes	0.9	7.0	20.0	2.2	5.8x10 ⁹	42.6
12	Yes	9.3	71.3	-20.0	5.2	1.1x10 ¹⁰	15.6
13	No	4.9	18.8	-0.02	3.1	1.9x10 ¹⁰	5.7

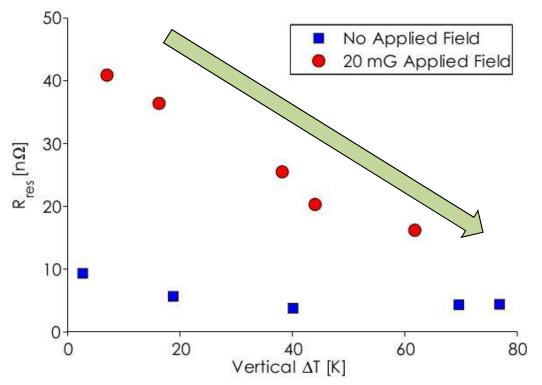
Changes from VT to HTC

Cavity	Lhe Tank	HTC Test	VT Result	HT Result (cool down from 80K)	ΔR _{VT->HT} [nΩ]
TB9ACC012	ILC	HTC9-1	(3.5 ± 0.4) x10 ¹⁰	(2.8 ± 0.3) x10 ¹⁰	2 ± 2
TB9AES011	ILC	HTC9-2	(3.4 ± 0.3) x10 ¹⁰	(2.7 ± 0.3) x10 ¹⁰	2 ± 2
TB9AES018	LCLS-II	HTC9-3	(3.1 ± 0.3) x10 ¹⁰	(2.2 ± 0.2) x10 ¹⁰	4 ± 2



- Uncertainty on values: 1 to 2 nOhm.
- Increase in residual resistance from VT->HTC: 1 to 2 nOhm.
- Increase in BCS resistance at 16 MV/m from VT->HTC: 2 to 3 nOhm.
- Residual resistance is higher in HTC.
- BCS resistance has also increased
 - Degradation somehow due to tank welding?
 - Local heating at high fields (e.g. due to trapped flux, as suggested by FNAL)?

Magnetic Field Study


- Slow cool down (100% flux trapping) gives an additional ~2 nΩ/mG.
- Fast cool down gives an additional ~0.7 n Ω /mG.

Effects of Cool Down on R,

As shown in previous HTC tests, large vertical temperature gradients give more flux expulsion and **lower residual** resistance.

- Fast cool downs without applied field show now further reduction in R_{res} for $\Delta T > 40$ K.
- Remaining residual resistance not from trapped flux or from flux that does not get pushed out, even with very fast cool down (see FNAL suggestion)? Cornell Laboratory fo

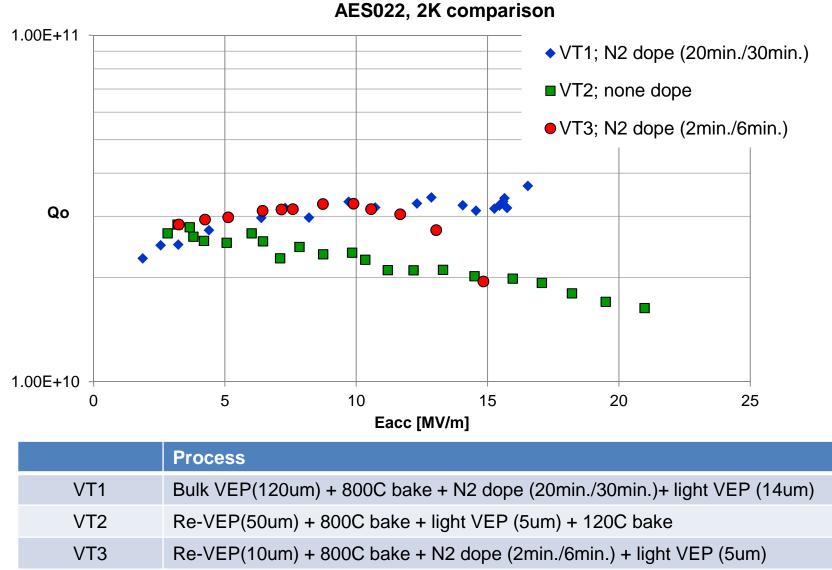
d Education (CLASSE

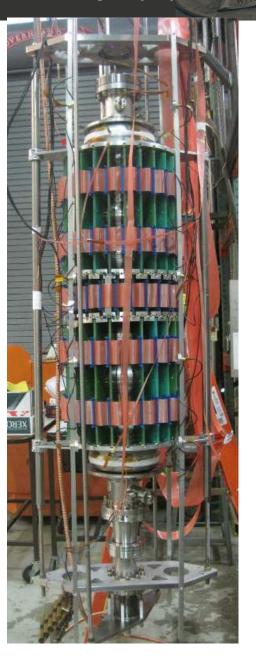
HTC9-4, AES018 w/ coupler

Preparation is on going....

Recent 9-cell VT results AES022

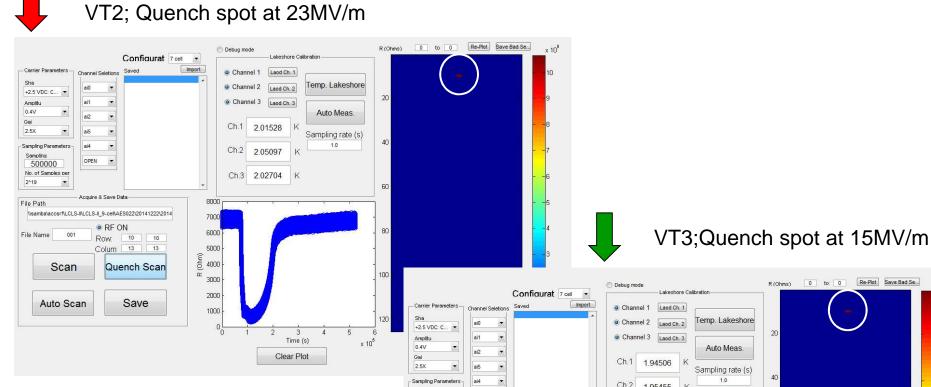
Quench localization w/ T-map before/after N2 doping

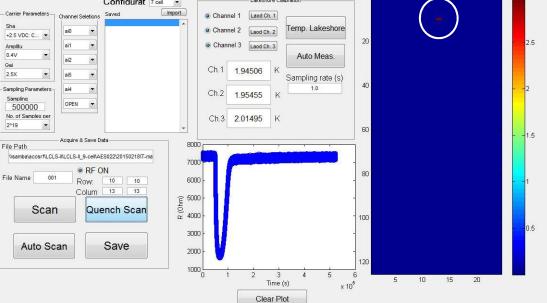




Quench localization by T-map (1)

- T-map boards covered center 7-cell, no T-map on end cells.
- OSTs are installed to cover end cells.





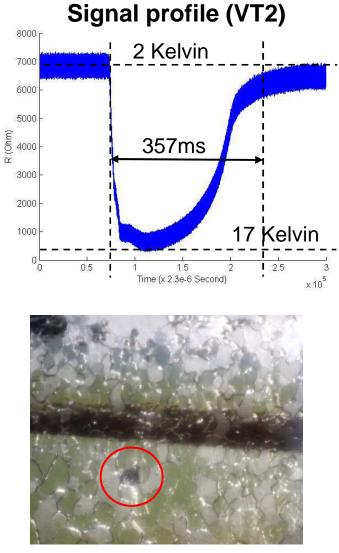
Quench localization by T-map (2)

2^19

Same quench spot before/after N2-dope.

Re-Plot Save Bad Se...

x 10⁸


0 to 0

R (Ohms)

Cornell Laboratory for Accelerator-based Science and Education (CLASSE)



Quench localization by T-map (3)

Defect found at the location.

OST predicts same quench location with T-map

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)