Beam Test and Comparison with Simulation

Ye Tian Syracuse University For ECal Beam Test Group

Shower MIP StudyCherenkov Npe Study

Moller Background Simulation

Moller background contributes to the photon signal when it interacts with the beam pipe

--- Test it with the Moller event generator from PRad: PRadSim/evgen/norc

The discrepancy between the simulation and the

data is due to the absence of Moller background.

Beam Test ShowerSum MIP

Scintillators with Coincidence Trigger

45uA SC_B&SC_D triggered timing threshold=36

• The MIP peak should be cleanest for a tight 12 ns triple coincidence (SC_D & SC_B & ShSum), less clean for coincidences with SCD, and weakest for random triggers.

- The scintillator trigger used do find the MIP's was dominated by accidentals.
- we had to develop methods to use the signals from the waveform electronics to minimize the background, a useful task that will be useful in minimizing systematic errors in the SoLID data.

ShowerSum MIP Peaks at Various Beam Currents

Rate_Hz

0.15

0.05

Improving the MIP Peak:

- Correcting for the rate-dependent gain changes. This is done by aligning the MIP peaks and also by matching the high energy of the Shower spectrum.
- Correcting the base-line shift due to small pulses from electromagnetic background.
- Tight timing cuts to reduce accidentals based on the timing plots.
- Optimize the thresholds of the scintillators.

Beam Test Data and Simulation Comparison for the Shower Edep Distribution

Can we see high energy electrons?

- The uncertainty in the calibration of the Shower has a big effect on the e⁻/π⁰ ratio at the highest energies. (It is >10%, which changes the rate by a factor of 10 at high energies.)
- Cherenkov is ~20X more efficient for electrons than photons detected by Shower.

- Baseline correction applied
- The integration Time Window for the waveform is from the left half maximum of the peak(T LHMP) to T LHMP+40ns.

ShowerSum

• Fixed integration TW as 40ns.

Timing Plots

Cherenkov Spectra with 10<=Cer[i]<=13

10<=Cer[i]_pos<=13

- no beam
- 5uA+1 channel fired
- 10uA+1 channel fired
- 40uA+1 channel fired

26<=Cer[i]_pos<=29

10uA + >3-channels fired

Cherenkov Integrated Spectra

CerB2

C

10uA Npe ShowerSum Triggered with SC_D cut vs 1.5 cm<Sh_cluster_X/Y<1.5 cm Cuts

threshold>=5 MIP

threshold>=17 MIP

threshold>=7 MIP

40uA Npe ShowerSum Triggered with/without SC_D Timing Cut

0.1

40uA and 10uA ShowerSum triggered Average Npe with SC_D cut

- Use software ShowerSum threshold cuts
- ΔT(Shower_r-SC_D), ΔT(Shower_I-SC_D), and ΔT(Shower_t-SC_D) cuts

40uA and 10uA ShowerSum triggered Average Cer_hitN with SC_D cut

threshold>=5 MIP

threshold>=7 MIP

Summary and Outlook

- Include Moller backgrounds to achieve better agreement between the simulation and data in the MIP region.
- We had to develop a method to utilize signals from waveform electronics to minimize background noise. The method helps refine MIP peaks by applying coincident timing cuts on ΔT (ShSum-SC_B) and ΔT (ShSum-PreShSum) for high-rate data at 45 μ A and 65 μ A.
- At 18 degrees, we detect high-energy electrons using the Cherenkov detector by applying higher energy deposition thresholds on ShowerSum.
- The Cherenkov detector's number of photoelectrons (Npe) and the number of hitting channels are consistent between the 10 µA and 40 µA data. However, the observed data shows fewer photoelectrons compared to the simulation. We need to test the mirror efficiency

Backup

10uA Npe ShowerSum triggered with SC_D timing cut vs SC_A timing cut

threshold>=5 MIP threshold>=7 MIP 0.35 0.35 N_event/N_trigger N_event/N_trigger [26,29]>5 MIP SC_D cut [26,29]>7 MIP SC_D cut 0.3 0.3 [26,29]>7 MIP SC_A cut [26,29]>5 MIP SC_A cut [10,13]>5 MIP SC_D cut [10,13]>7 MIP SC_D cut 0.25 0.25 [10,13]>5 MIP SC_A cut [10,13]>7 MIP SC_A cut 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 <u>المن مواليا أخصالاً، ومن وال</u> 0 25 30 35 25 30 35 40 45 50 20 40 45 20 10 15 50 Less statistics with SC_A cut threshold>=10 MIP threshold>=17 MIP 0.35 0.35 N_event/N_trigger N_event/N_trigger [26,29]>10 MIP SC_D cut [26,29]>17 MIP SC_D cut 0.3 0.3 [26,29]>17 MIP SC_A cut [26,29]>10 MIP SC_A cut [10,13]>10 MIP SC_D cut [10,13]>17 MIP SC_D cut 0.25 0.25 [10,13]>10 MIP SC_A cut [10,13]>17 MIP SC_A cut 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05

10

15

20

25

30

35

40

45

50 Npe

45

25

30

35

40uA Npe ShowerSum triggered with SC_D cut vs 1.5 cm<Sh_cluster_X/Y<1.5 cm cut

threshold>=5 MIP

[26,29]>7 MIP SC_D cut

Average Npe ShowerSum triggered with SC_D Timing Cut

Average Npe ShowerSum triggered with SC_D Timing Cut

