Measurement of the Unpolarized SIDIS Cross Section from a ³He Target with SoLID

Run-Group Proposal Defense

Ye Tian Syracuse University

On behalf of the spokespersons

Umberto D'Alesio Matteo Cerutti Shuo Jia Vlad Khachatryan Università di Cagliari & INFN Sezione di Cagliari Christopher Newport University & Jefferson Lab Duke University Indiana University & Duke University

SoLID Collaboration Meeting, Jefferson Lab, Newport News, VA January 9-10, 2025

Outline

Experimental setup and motivation for our proposed experiment

- SoLID ³He setup and experimental details
- Motivation for unpolarized cross-section measurements
- SIDIS process and differential cross section
- Estimated systematic uncertainties for the experiment
- Some more physics results in addition to the SoLID impact results
- Summary and outlook

Experimental Setup

Our run group experiment parasitic to SoLID SIDIS experiments of

E12-10-006: Single Spin Asymmetries on Transversely Polarized ³He (neutron): Rating A

- > Approved number of days:
 - 48 days (11 GeV) & 21 day (8.8 GeV)
- 10 days requested for study of x-z factorization with Hydrogen/Deuterium gas using reference target cell
- 3 days of reference cell runs for optics and detector check
- 5 days of target overhead: spin rotation, polarization measurement
- 3 days requested with longitudinal target polarization to study systematics of potential A_{UL} contamination

E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized ³He (neutron): Rating A

- Approved number of days:
 - 22.5 days (11 GeV) & 9.5 day (8.8 GeV)

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sold Jefferson Lab 3

Data Status

- ➤ Hall A data
- E06-010: SIDIS π^{\pm} productions from a **transversely polarized ³He target** with **5.9 GeV** beam (0.12 < x_{bj} < 0.45, 1 < Q² < 4 GeV², 0.45 < z_h < 0.65, 0.05 < P_{hT} < 0.55 GeV)

X. Yan, et al., Phys. Rev. C 95, no.3, 035209 (2017)

- ➤ Hall B data
- RG-A: Measurements of the cosφ_h and cos 2φ_h Moments of the Unpolarized SIDIS π⁺ Cross-section with 10.6 GeV beam and hydrogen target

➤ Hall C data

• E00-108: SIDIS π^{\pm} productions from **hydrogen** and **deuterium** targets with **5.5** GeV beam (0.2 < x_{bj} < 0.6, 2 < Q²< 4 GeV², 0.3 < z_h < 1, and P_{hT}^2 < 0.2 GeV²)

R. Asaturyan and et.al Phys. Rev. C 85, 015202 (2012)

• E12-09-017: Transverse momentum (P_{hT}) dependence of SIDIS π^{\pm} and K^{\pm} productions from **hydrogen** and **deuterium** targets with **8.8 GeV and 11 GeV** beam (0.2 < x_{bj} < 0.5, 2 < Q²< 5 GeV², 0.3 < z_h < 0.5, and P_{hT} < 0.5 GeV)

R. Capobianco

This SoLID proposal: SIDIS π^{\pm} and K^{\pm}

 $0 < x_{bj} < 0.7, 1 < Q^2 < 10 \text{ GeV}^2, 0.3 < z_h < 0.7, 0 < P_{hT} < 1.6 \text{ GeV}, -\pi < \phi_h < \pi$

Motivation

□ Lack of data on SIDIS unpolarized absolute cross sections

- Study both the shape and the normalization of the SIDIS cross sections
- Ascertain the validity of the factorization theorems
- o Nuclear corrections: EMC effect, nuclear binding, Fermi motion, and off-shell effects
- o higher-twist effects on azimuthal angular modulations
- TMD flavor dependence

SIDIS Process

Project unpolarized cross-section pseudo-data in 5-D binning

$$x_{\!\scriptscriptstyle bj}, \; P_{hT}, z_h, Q^2, \phi_h$$

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 6

SIDIS Unpolarized Cross Section

We have some updates for the formula

$$\frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} = 2\pi \frac{\alpha^2}{x_{bj}yQ^2} \left(1 + \frac{\gamma^2}{2x_{bj}}\right) \times \left[c_1 F_{UU} + c_2 \cos(\phi_h) F_{UU}^{\cos(\phi_h)} + c_3 \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)}\right]$$

Matteo showed SoLID impact-study results with this first term at NNNL

We also have SoLID projection results at LO parton model

There are no ϕ_h -dependent terms computed within TMD factorization (obtained within LO parton model)

NNNLL means next-to-next-to-next-to-leading-log

SIDIS Unpolarized Cross Section

$$\frac{d\sigma}{dx_{_{bj}}dydz_hdP_{hT}^2d\phi_h} = 2\pi \frac{\alpha^2}{x_{_{bj}}yQ^2} \left(1 + \frac{\gamma^2}{2x_{_{bj}}}\right) \times \left[c_1 F_{UU} + c_2 \cos(\phi_h) F_{UU}^{\cos(\phi_h)} + c_3 \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)}\right]$$

Use the following Gaussian parameterizations for the TMD PDF and TMD FF

- Cahn effect $\propto f_1 \otimes D_1$
 - Non-zero Cahn effect solely require non-zero quark transverse momentum
 - Related to quarks' intrinsic transverse momentum distribution

$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}} \qquad \text{Twist-4 Cahn \& twist-2 Boer-Mulders: } \cos(2\phi_h) \text{ dependence}$$

- Boer-Mulders effect $\propto h^{\perp}_{1} \otimes H^{\perp}_{1}$
 - Boer-Mulders TMD PDF: transversely polarized quarks in unpolarized nucleon
- Twist-4 Cahn effect could have similar size of contribution to $cos(2\phi_h)$ as Boer- Mulders [Phys. Rev. D. 81:114026 (2010) based on HERMES/COMPASS results]

Systematic Uncertainties

Sol Jefferson Lab 9

Systematic Uncertainties of Unpolarized Cross Section: Acceptance Uncertainty from Elastic Process

Systematic Uncertainties of Unpolarized Cross Section: Acceptance Uncertainty from DIS

Deep Inelastic Scattering Process

- different global structure functions
- "Fits" (as Christy's fits includes 12 GeV data)

https://github.com/JeffersonLab/evgen_inclusive_e

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

11

Jefferson Lab

Systematic Uncertainties of Unpolarized Cross Section: Coincidence Acceptance Study Plan

10days of 11 GeV unpolarized hydrogen and deuterium runs (SIDIS transversely polarized ³He experiment E12-10-006) above the resonance region $d\sigma/dt$ (x_{bi}, Q²) Q2:-tvar {rate*(W>2 && Q2>1)} (GeV²)

$$\neq e+p \rightarrow e'+\pi^++n$$

Proton target data

- Hall C
- \triangleright Q²= 0.6-2.45 GeV², W=1.9 and 2.0 GeV, 0.026 GeV² ≤ -t ≤ 0.365 GeV² H. P. Blok and et.al., Phys. Rev. C 78, 045202 (2008)
- $P = 2.4 \text{ GeV}^2$, W=2.0 GeV, 0.272 GeV² -t < 2.127 GeV² S. Basnet and et. al, Phys. Rev. C 100 (2019) 6, 065204
- Hall B ٠
- \blacktriangleright 0.16 < x_{bj} < 0.58, 1.6 GeV² < Q² < 4.5 GeV² and 0.1 GeV² < −t < 5.3 GeV² K. Park and et al., Phys. J. A 49, 16 (2013)
- HERMES •
- \blacktriangleright 0.02 < x_{bi} < 0.55, 1 GeV² < Q² < 11 GeV² and −t < 2 GeV² A. Airapetian and et al., Phys. Lett. B. 659, 486 (2008).

$$rightarrow e' + \pi^- + p$$

Deuterium target data

- Hall C ٠
- \triangleright O²= 0.6-1.6 GeV², W=1.95, O²= 2.45 GeV², W=2.2 G. M. Huber and et al., Phys. Rev. C 91, 015202 (2015)

Further comparisons can be made with existing JLab 12 GeV data from Hall B and Hall C after being analyzed

Systematic Uncertainties of Unpolarized Cross Section

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 13

Systematic Uncertainties of Unpolarized Cross Section

Other systematic uncertainty sources

Diffractive ρ fraction to SIDIS for $x_{bi} = 0.35$, $Q^2 = 4 (GeV/c)^2$ for D_2

Discrepancy between models agreed to 10% according to 6 GeV era study

Multiplied by ρ yield ratio; **uncertainty is** < 1%

Obtained from SIMC HallC Simulation Package

Radiative correction factor for typical JLab kinematic setting at $\sqrt{s} = 4.90$ GeV, $Q^2 = 8$ (GeV/c)², $z_h = 0.375$, $x_{bj} = 0.48$ Discrepancy between two methods is **around 2.5%**

https://indico.bnl.gov/event/18419/contributions/80386/attachments/49832/ 85265/Jia_Khachatryan_SIDIS-RC.pdf

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

 Q^2 $\pi_{\rm D}^+$ z $\pi_{\rm H}^+$ $\pi_{\rm D}^$ x $\pi_{\rm H}^ (\text{GeV}/c)^2$ (%) (%) (%) (%) 0.55 0.22 1.59 6.1 ± 0.2 3.7 ± 0.1 5.1 ± 0.2 _ 0.26 0.55 1.88 5.2 ± 0.1 3.5 ± 0.1 5.1 ± 0.1 0.30 0.55 2.17 4.6 ± 0.1 3.4 ± 0.1 5.3 ± 0.1 0.34 0.55 2.46 4.6 ± 0.1 3.3 ± 0.1 5.1 ± 0.1 0.38 0.55 2.75 4.2 ± 0.1 2.9 ± 0.1 4.8 ± 0.1 0.42 0.55 3.04 3.8 ± 0.1 2.7 ± 0.1 4.9 ± 0.1 0.46 0.55 3.32 3.7 ± 0.1 4.2 ± 0.1 2.6 ± 0.1 0.50 0.55 3.61 3.1 ± 0.1 3.6 ± 0.1 2.3 ± 0.1 0.55 3.90 0.54 3.2 ± 0.1 1.9 ± 0.1 3.1 ± 0.1 0.58 0.55 4.19 2.5 ± 0.1 1.5 ± 0.1 2.5 ± 0.1

Exclusive radiative tail yield to SIDIS yield ratio from 6 GeV era; decreasing with increasing Q² Discrepancy between models agreed to 10-15%; **uncertainty to be < 0.6%**

Systematic Uncertainties of Unpolarized Cross Section

Radiative corrections introduce an additional phi dependence

RC factors calculated based on using the traditional method (Lowest order QED radiative effects in polarized SIDIS) for several kinematic bins.

Charged pions

Charged kaons

Sources	Uncertainty	Sources	Uncertainty
Acceptance correction	6%	Acceptance correction	6%
Experimental resolution	3.5%	Experimental resolution	3.5%
Pion detection efficiency	4%	Kaon detection efficiency	12%
Electron detection efficiency	< 2%	Electron detection efficiency	< 2%
Radiative corrections	2.5%	Radiative corrections	2.5%
Radiative backgrounds	0.6%	Radiative backgrounds	0.6%
Vector meson production	1%	Vector meson production	1%
Luminosity determination	2.5%	Luminosity determination	2.5%
Total	< 10%	Total	< 15%

Total uncertainty calculated by rounding off the quadrature sum of separate contributions

More Physics Projections

> Produced π^+ unpolarized cross section at **11 GeV** beam energy

SoLID low-Q² region

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

SolD Jefferson Lab 17

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 18

More Physics Projections

> Produced $\underline{\pi^+}$ unpolarized cross section at **11 GeV** beam energy

SoLID low-Q² region

19 Jefferson Lab

X_{bi}

0

Azimuthal modulation effect

$$\frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} \equiv \mathcal{F}_{\mathcal{U}\mathcal{U}} = \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}}\cos 0 + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{B}}\cos(\phi_h) + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}}\cos(2\phi_h)$$

Fitting ϕ_h distribution with a simple function: A(1 - B · cos(ϕ_h) - C · cos(2 ϕ_h))

0.55 -	$\begin{array}{c} 0.3 < z_h < 0.4 1 < Q^2 < 1.5 \; GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \; GeV/c \end{array}$	$\begin{array}{c} 0.4 < z_h < 0.5 1 < Q^2 < 1.5 \ GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.5 < z_h < 0.6 1 < Q^2 < 1.5 \; GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \; GeV/c \end{array}$	0.00 -	$\begin{array}{c} 0.3 < z_h < 0.4 \ 1 < Q^2 < 1.5 \ GeV^2 \\ 0 < x_b < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.4 < z_h < 0.5 1 < Q^2 < 1.5 \ GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.5 < z_h < 0.6 1 < Q^2 < 1.5 \; GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \; GeV/c \end{array}$
0.50 -		-		0.02			•
0.40 -		-	└	-0.02 -	• •	- •	
0.35 -	• •	• •	- T	-0.04 -		- 🕴	- I
0.35 -	$0.3 < z_h < 0.4$ $1.5 < Q^2 < 2 \ GeV^2$ $0 < x_b < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	$\begin{array}{c} 0.4 < z_h < 0.5 & 1.5 < Q^2 < 2 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	0.5 < z_h < 0.6 1.5 < Q^2 < 2 GeV ² 0 < x_b < 0.25 0 < P_{hT} < 0.2 GeV/c	0.050 -	$0.3 < z_h < 0.4$ $1.5 < Q^2 < 2 \ GeV^2$ $0 < x_b < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	$-0.4 < z_h < 0.5 1.5 < Q^2 < 2 \ GeV^2$ $0 < x_b < 0.25 0 < P_{hT} < 0.2 \ GeV/c$	$\begin{array}{c} 0.5 < z_h < 0.6 1.5 < Q^2 < 2 \ GeV^2 \\ 0 < x_b < 0.25 0 < P_{hT} < 0.2 \ GeV/c \end{array}$
				0.025 -	- ···	-	
m 0.30 -	·	- • •	- • •	O 0.000 -	• •	- • •	╴╹╹
0.25	• •	_		-0.025 -		-	-
0.25		-		-0.050 -		-	-
0.35 -	$0.3 < z_h < 0.4$ $2 < Q^2 < 2.5 GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 GeV/c$	$-0.4 < z_h < 0.5 \ 2 < Q^2 < 2.5 \ GeV^2$ $0 < x_h < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$	$\begin{array}{c} 0.5 < z_h < 0.6 2 < Q^2 < 2.5 \ GeV^2 \\ 0 < x_h < 0.25 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	0.05 -	$0.3 < z_h < 0.4$ $2 < Q^2 < 2.5 GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 GeV/c$	$\begin{array}{c} 0.4 < z_h < 0.5 2 < Q^2 < 2.5 \ GeV^2 \\ 0 < x_h < 0.25 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c c} 0.5 < z_h < 0.6 & 2 < Q^2 < 2.5 \ GeV^2 \\ 0 < x_h < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$
0.30 -	-	-					
0.25 -		- 🛉 🛉	├ ♥ ♥	0.00 -		- 🖕 🛉	- 🔶 🛉
0.20 -	• •	-			• •	1	
0.15 -			-	-0.05 -		-	- '
0.4 -	$\begin{array}{c} 0.3 < z_h < 0.4 \ 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.4 < z_h < 0.5 & 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.5 < z_h < 0.6 & 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	0.1 -	$\begin{array}{c} 0.3 < z_h < 0.4 & 2.5 < Q^2 < 3 \; GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \; GeV/c \end{array}$	$\begin{array}{c} 0.4 < z_h < 0.5 & 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$	$\begin{array}{c} 0.5 < z_h < 0.6 & 2.5 < Q^2 < 3 \ GeV^2 \\ 0 < x_b < 0.25 & 0 < P_{hT} < 0.2 \ GeV/c \end{array}$
0.2 -	• •	- 🛉 🛉	-	0.0 -	• •	- + +	-
0.0 -		-	-	-0.1 -		-	

Red points for $\pi^{\scriptscriptstyle +},$ black points for $\pi^{\scriptscriptstyle -}$

Transverse momentum widths

$$F_{UU} = \sum_{q} e_q^2 x_{bj} f_q(x_{bj}) D_q(z_h) \frac{e^{-P_{hT}^2/\langle P_{hT}^2 \rangle}}{\pi \langle P_{hT}^2 \rangle}$$
$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}}$$
$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}}$$

where
$$\langle P_{hT}^2 \rangle = \langle p_{\perp}^2 \rangle + z_h^2 \langle k_{\perp}^2 \rangle$$

In model, we have (in GeV²) $< k_{\perp}^2 >= 0.604, < p_{\perp}^2 >= 0.114$

Least_Square =
$$\sum (pseudodata - Model)^2 / (stat + sys)^2$$

The fitting results shows (in GeV²):

 $\langle k_{\perp}^2 \rangle = 0.5871 \pm 0.0002 \; (\text{GeV/c})^2$ $\langle p_{\perp}^2 \rangle = 0.1165 \pm 0.0003 \; (\text{GeV/c})^2$

Three contours corresponding to confidence levels of 68%, 90% and 99%

Both Cahn and Boer-Mulders contributions included

All data from positive and negative polarities are considered

The fitting results differs from the model by 4%

21

Jefferson Lab

More Physics Projections

➢ Test of factorization

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 22

Summary and Outlook

- With high luminosity and large acceptance, SoLID could provide high-precision SIDIS unpolarized cross-section data with full azimuthal angular coverage
- The updated run-group proposal includes
 - Detailed systematic uncertainty studies
 - Physics impact results for unpolarized TMD using state-of-the-art (MAP framework)
 - SoLID projections for unpolarized integrated cross section using MAP and TMD factorization
 - SoLID projections for unpolarized cross section with azimuthal modulations using TMD factorization
 - Some results on azimuthal modulation effects and Gaussian width parameters
 - Some results on test of factorization
- Calibration planned for unpolarized cross-section measurement

Thank You !

Acknowledgements: the entire SoLID collaboration Supported in part by U.S. Department of Energy under contract numbers: DE-FG02-03ER41231 and DE-FG02-84ER40146

Calibration Plan

> Calibration studies for unpolarized cross-section measurement of this proposal

Target	Beam energy (GeV)	Field	Time (hour)	Purpose
H ₂ reference cell	2.2	Normal	1	Acceptance study
Empty reference cell	2.2	Normal	1	Backgrounds subtraction
Carbon	2.2	Normal	1	Acceptance study
H ₂ reference cell	4.4	Normal	1	Acceptance study
Empty reference cell	4.4	Normal	1	Backgrounds subtraction
Carbon	4.4	Normal	1	Acceptance study

We are not asking for new beam time !!!

Reference cell runs, optics and detector check : 3 Days (using approved calibration time)

Calibration Plan

Details of the beam time request for the transversely polarized 3He experiment E12-10-006 (and for the longitudinally polarized 3He experiment E12-11-007 shown in parentheses).

	Time (Hour)	Time (Day)
Production on Pol. 3 He at 11 GeV	1152	48
Production on Pol. 3He at 8.8 GeV	504	21
Longitudinal on Pol. ³ He at 11 GeV	38(538)	2(22.5)
Longitudinal on Pol. ³ He at 8.8 GeV	24(228)	1(9.5)
Dedicated Hydrogen run at 11 GeV	84	3.5
Dedicated Deuterium run at 11 GeV	84	3.5
Dedicated Hydrogen run at 8.8 GeV	36	1.5
Dedicated Deuterium run at 8.8 GeV	36	1.5
Reference cell runs, optics and detector check	72	3
Target Overhead: spin rotation, polarization measurement	120(60)	5(2.5)
Total Time Request	2160(826)	90(34.5) days

Target	Beam energy (GeV)	Field	Time (hour)
Carbon	8.8	Normal	1
Carbon	8.8	50%	1
Carbon	8.8	0%	1
Carbon	11	Normal	1
Carbon	11	50%	1
Carbon	11	0%	1

Calibration arrangement for related detector alignment and particle tracking, for unpolarized cross-section measurement

Experimental setup and motivation for	SIDIS process and	Systematíc	Some more	Summary and
unpolarized cross-section measurements	differential cross section	uncertaíntíes	physics results	outlook

- Momentum coverage: 1.0 7.0 GeV/c; Polar angular coverage: 8.0° 14.8° (for hadron & electron ID)
- Momentum coverage: 3.5 6.0 GeV/c; Polar angular coverage: 15.7° 24.0° (for electron ID)
- > Momentum resolution: $\sim 2\%$; Polar angular resolution: 2 mrad
- > Azimuthal angular coverage: 2π ; Azimuthal angular resolution: 6 mrad
- > PID (electron): detection efficiency \geq 90%; pion contamination < 1%
- > PID (pion): detection efficiency \geq 90%; kaon contamination < 1%
- > Total luminosity: $3.74 \cdot 10^{36} \text{ cm}^{-2} \text{ sec}^{-1}$
- > Beam polarimetry: < 3%; Beam current: 15 μ A
- Many other details in SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report, <u>https://solid.jlab.org/</u>

Experimental setup and motivation for
unpolarized cross-section measurementsSIDIS process and
process and
unpolarized cross-sectionSystematic
physics resultsSummary and
outlook

$$\mathcal{F}_{\mathcal{UU},\mathcal{B}} = 2\pi \, \frac{\alpha^2}{x_{bj} y Q^2} \left(1 + \frac{\gamma^2}{2x_{bj}} \right) c_2 \, F_{UU}^{\cos(\phi_h)},$$

> The second structure function $F_{UU}^{cos(\phi_h)}$, associated to the $cos(\phi_h)$ modulation of the cross section, is a twist-3 quantity of the order of 1/Q

$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}}$$

where

$$\begin{split} F_{UU}^{\cos(\phi_h)}\big|_{\text{Cahn}} &= -2\sum_q e_q^2 \, x \int d^2 \mathbf{k}_\perp \, \frac{(\mathbf{k}_\perp \cdot \mathbf{h})}{Q} \, f_q(x, k_\perp) D_q(z, p_\perp) \\ \text{as the Cahn convolution of unpolarized TMD PDF and TMD FF} \\ F_{UU}^{\cos(\phi_h)}\big|_{\text{BM}} &= \sum_q e_q^2 \, x \int d^2 \mathbf{k}_\perp \, \frac{k_\perp}{Q} \frac{P_{hT} - z \, (\mathbf{k}_\perp \cdot \mathbf{h})}{k_\perp} \, \Delta f_{q^\uparrow/p}(x, k_\perp) \, \Delta D_{h/q^\uparrow}(z, p_\perp) \\ \text{as the Boer-Mulders convolution of Boer-Mulders TMD PDF and Collins TMD FF} \end{split}$$

Experimental setup and motivation for
unpolarized cross-section measurementsSIDIS process and
bifferential cross sectionSystematic
uncertaintiesSome more
physics resultsSummary and
outlook

> Analytical forms of the Cahn and Boer-Mulders azimuthal modulation given by

$$\begin{split} F_{UU} &= \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle}}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(\phi_{h})}|_{Cahn} &= -2 \frac{P_{hT}}{Q} \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{z_{h} \langle k_{\perp}^{2} \rangle}{\langle P_{hT}^{2} \rangle} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle}}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(\phi_{h})}|_{BM} &= 2e \frac{P_{hT}}{Q} \sum_{q} e_{q}^{2} x_{bj} \frac{\Delta f_{q^{\dagger}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\dagger}}(z_{h})}{M_{C}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}}{\pi \langle P_{hT}^{2} \rangle_{BM}} \\ &\qquad \times \frac{\langle k_{\perp}^{2} \rangle_{BM}^{2} \langle p_{\perp}^{2} \rangle_{C}^{2}}{\langle k_{\perp}^{2} \rangle \langle p_{\perp}^{2} \rangle} \left[z_{h}^{2} \langle k_{\perp}^{2} \rangle_{BM} \left(P_{hT}^{2} - \langle P_{hT}^{2} \rangle_{BM} \right) + \langle p_{\perp}^{2} \rangle_{C} \langle P_{hT}^{2} \rangle_{BM}} \right], \\ F_{UU}^{\cos(2\phi_{h})}|_{Cahn} &= 2 \frac{P_{hT}^{2}}{Q^{2}} \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{z_{h}^{2} \langle k_{\perp}^{2} \rangle}{\langle P_{hT}^{2} \rangle^{2}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(2\phi_{h})}|_{BM} &= -eP_{hT}^{2} \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{z_{h}^{2} \langle k_{\perp}^{2} \rangle}{\langle P_{hT}^{2} \rangle^{2}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(2\phi_{h})}|_{BM} &= -eP_{hT}^{2} \sum_{q} e_{q}^{2} x_{bj} \frac{\Delta f_{q^{\dagger}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\dagger}}(z_{h})}{M_{C}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}}{\pi \langle P_{hT}^{2} \rangle_{BM}} \\ \times \frac{z_{h} \langle k_{\perp}^{2} \rangle_{BM}^{2} \langle p_{\perp}^{2} \rangle_{C}^{2}}{\langle k_{\perp}^{2} \rangle \langle p_{\perp}^{2} \rangle}, \\ \end{array}$$

Jefferson Lab

Sold

29

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 30

Experimental setup and motivation for unpolarized cross-section measurements

SIDIS process and differential cross section

Systematic

uncertaíntíes

Some more physics results

\succ Produced π^{-} unpolarized cross section at **11 GeV** beam energy

SoLID low- Q^2 region

SoLID pseudo-data

Integrated cross section shown with blue central points from simple TMD model

Cross section including azimuthal modulations shown with red central points from simple TMD model

31 Jefferson Lab

Sold Jefferson Lab 32

Experimental setup and motivation for	SIDIS process and	Systematíc	Some more	Summary and
unpolarized cross-section measurements	dífferentíal cross section	uncertaíntíes	physics results	outlook

Ye Tian: SoLID Collaboration Meeting, January 9-10 (2025), JLab

Sol Jefferson Lab 33