

CHRISTOPHER NEWPORT[™] UNIVERSITY

Measurement of the Unpolarized SIDIS Cross Section with SoLID:

advanced MAP framework and physics impact results

Matteo Cerutti

on behalf of the spokespersons

U. D'Alesio, S. Jia, V. Khachatryan, Y. Tian

Transverse-Momentum Distributions (TMDs)

3-*dimensional map* of the internal structure of the nucleon

Non-collinear framework

Quark Polarization

	U	L	Т
U	f_1		h_1^\perp
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1 h_{1T}^{\perp}$

TMD PDFs

 $F(x, \boldsymbol{k}_{\perp}^2, \mu, \zeta)$

Transverse-Momentum Distributions (TMDs)

3-*dimensional map* of the internal structure of the nucleon

Non-collinear framework

Quark Polarization

TMD PDFs

 $F(x, \boldsymbol{k}_{\perp}^2, \mu, \zeta)$

SIDIS structure function (TMD factorization)

The <u>W term</u> dominates in the region where q_T «Q

Bacchetta, Diehl, et al., JHEP 02 (2007) Collins, "Foundations of Perturbative QCD"

TMD in Fourier space

$$\hat{F}(x, b_T^2; \mu, \zeta) = \int \frac{d^2 \boldsymbol{k}_\perp}{(2\pi)^2} e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} F(x, k_\perp^2; \mu, \zeta)$$

TMD in Fourier space

$$\hat{F}(x, b_T^2; \mu, \zeta) = \int \frac{d^2 \boldsymbol{k}_\perp}{(2\pi)^2} e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} F(x, k_\perp^2; \mu, \zeta)$$

$$\hat{f}_1^q(x, b_T^2; \mu, \zeta) = \sum_j C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2) \otimes f_1^j(x, \mu_{b_*})$$
:A

Perturbative TMD at the initial scale

TMD in Fourier space

$$\hat{F}(x, b_T^2; \mu, \zeta) = \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} F(x, k_\perp^2; \mu, \zeta)$$

$$\hat{f}_1^q(x, b_T^2; \mu, \zeta) = \sum_j C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2) \otimes f_1^j(x, \mu_{b_*})$$
:A

Perturbative TMD at the initial scale

$$\times \exp\left\{K(b_*;\mu_{b_*})\ln\frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\} : \mathsf{B}$$

Evolution to final scale (of the process)

TMD in Fourier space

$$\hat{F}(x, b_T^2; \mu, \zeta) = \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} F(x, k_\perp^2; \mu, \zeta)$$

$$\hat{f}_1^q(x, b_T^2; \mu, \zeta) = \sum_j C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2) \otimes f_1^j(x, \mu_{b_*})$$
:A

Perturbative TMD at the initial scale

$$\times \exp\left\{K(b_*;\mu_{b_*})\ln\frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\} : \mathsf{B}$$

Evolution to final scale (of the process)

$$\times f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : \mathcal{C}$$

Non-perturbative part of the TMD

TMD in Fourier space

$$\begin{split} \hat{F}(x, b_T^2; \mu, \zeta) &= \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} F(x, k_\perp^2; \mu, \zeta) \\ \hat{f}_1^q(x, b_T^2; \mu, \zeta) &= \sum_j \underbrace{C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2)}_{j} \otimes f_1^j(x, \mu_{b_*}) \\ \text{Perturbative TMD at the initial scale} \\ \text{Perturbative} & \times \exp\left\{ \underbrace{K(b_*; \mu_{b_*})}_{k_*} \ln \frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\} \\ & \quad : \mathbf{B} \\ \text{Evolution to final scale (of the process)} \\ & \quad \times f_{NP}(x, b_T^2) \exp\left\{ g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \quad : \mathbf{C} \end{split}$$

Non-perturbative part of the TMD

TMD in Fourier space

$$\begin{split} \hat{F}(x, b_T^2; \mu, \zeta) &= \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} e^{i \mathbf{b}_T \cdot \mathbf{k}_\perp} F(x, k_\perp^2; \mu, \zeta) & \text{Collinear extractions} \\ \hat{f}_1^q(x, b_T^2; \mu, \zeta) &= \sum_j \underbrace{C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2)}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} &: \mathbf{A} \\ \end{split}$$

$$\begin{aligned} & \text{Perturbative TMD at the initial scale} \\ & \times \exp\left\{\underbrace{K(b_*; \mu_{b_*})}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\} &: \mathbf{B} \\ & \text{Evolution to final scale (of the process)} \\ & \times f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} &: \mathbf{C} \end{aligned}$$

Non-perturbative part of the TMD

TMD in Fourier space

$$\begin{split} \hat{F}(x, b_T^2; \mu, \zeta) &= \int \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2} e^{i \mathbf{b}_T \cdot \mathbf{k}_{\perp}} F(x, k_{\perp}^2; \mu, \zeta) & \text{Collinear extractions} \\ \hat{f}_1^q(x, b_T^2; \mu, \zeta) &= \sum_j \underbrace{C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2)}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} &: \mathbf{A} \\ & \text{Perturbative TMD at the initial scale} \\ \text{Perturbative} & \times \exp\left\{ \underbrace{K(b_*; \mu_{b_*})}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\} &: \mathbf{B} \\ & \text{Evolution to final scale (of the process)} \\ & \times \underbrace{f_{NP}(x, b_T^2)}_{Non-perturbative part of the TMD} & \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} &: \mathbf{C} \\ & \text{Parameterization} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} &: \mathbf{C} \\ & \text{Parameterization} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} \\ & \text{A} = \frac{1}{2} \sum_{k_{b_*}} \frac{1}{k_{b_*}} \exp\left\{ \underbrace{g_K(b_T^2)}_{k_{b_*}} \ln \frac{1}{k_{b_*}} + \underbrace{g_K(b_T^2)}_{k_{b_*}} + \underbrace{g_K(b_T^2)}_{k_{b_*}} + \underbrace{g_K(b_T^2)}_{k_{b_*}} + \underbrace$$

Resummation of large logs

Resummation of large logs

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} R_{N^k \text{LL}}$$
$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+[k/2]}^{\infty} \left(\frac{\alpha_S(\mu)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)}$$

Resummation of large logs

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} R_{\text{N}^k \text{LL}}$$
$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+\lfloor k/2 \rfloor}^{\infty} \left(\frac{\alpha_S(\mu)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)} \qquad L = \ln\left(\frac{\mu^2}{\mu_b^2}\right)^n$$

5

Resummation of large logs

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} R_{\text{N}^k \text{LL}}$$

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+\lfloor k/2 \rfloor}^{\infty} \left(\frac{\alpha_S(\mu)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)} \qquad L = \ln\left(\frac{\mu^2}{\mu_b^2}\right)$$

Accuracy	H and C	K and γ_F	γκ	PDF/FF and a_S evol.
LL	0	-	1	-
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO/NLO
N ³ LL	2	3	4	NNLO
N ³ LL'	3	3	4	N ³ LO

Bacchetta, et al., JHEP 07 (2020) *TMD handbook*, Boussarie, et al., 2023

$$F_{UU,T}(x,z,|\boldsymbol{q}_{T}|,Q) \sim \int_{0}^{+\infty} d|\boldsymbol{b}_{T}||\boldsymbol{b}_{T}|J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{q}_{T}|)\hat{f}_{1}^{a}(x,b_{T}^{2};\mu,\zeta_{A})\hat{D}_{1}^{a\to h}(z,b_{T}^{2};\mu,\zeta_{B})$$

$$F_{UU,T}(x,z,|\boldsymbol{q}_{T}|,Q) \sim \int_{0}^{+\infty} d|\boldsymbol{b}_{T}||\boldsymbol{b}_{T}|J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{q}_{T}|)\hat{f}_{1}^{a}(x,b_{T}^{2};\mu,\zeta_{A})\hat{D}_{1}^{a\to h}(z,b_{T}^{2};\mu,\zeta_{B})$$

$$F_{UU}^{1}(x_{A},x_{B},|\boldsymbol{q}_{T}|,Q) \sim \int_{0}^{+\infty} d|\boldsymbol{b}_{T}||\boldsymbol{b}_{T}|J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{q}_{T}|)\hat{f}_{1}^{a}(x_{A},b_{T}^{2};\mu,\zeta_{A})\hat{f}_{1}^{\bar{a}}(x_{B},b_{T}^{2};\mu,\zeta_{B})$$

GLOBAL FITs

	Accuracy	SIDIS	DY	Z production	Flav. Dependence	N of points	χ²/N _{data}
Pavia 2017 arXiv:1703.10157	NLL				×	8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL ⁻		~	~	×	1039	1.06
MAP22 arXiv:2206.07598	N ³ LL ⁻	~	~		×	2031	1.06
MAP24 arXiv:2405.13833	N ³ LL	~	~	~		2031	1.08

MAP Collaboration — Fitting framework

https://github.com/MapCollaboration/NangaParbat

E README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

Ø

Drell-Yan data Fixed-target: E288, E605, E772

Collider mode: RHIC, Tevatron, LHC

Drell-Yan data 10^{5} 484 Fixed-target: 10^4 E288, E605, E772 $\begin{bmatrix} \mathbf{Q}_2^2 \\ \mathbf{Q}_2^2 \end{bmatrix}$ Collider mode: E605 E772E288 RHIC, Tevatron, LHC STAR PHENIX CDF D0LHCb 10^1 CMS ATLAS **SIDIS** data 1547 HERMES COMPASS 10^{0} HERMES, COMPASS 10^{-3} 10^{-2} 10^{-5} 10^{-4}

 10^{-1}

 10^{0}

Total number of data: 2031

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_{\perp}^2}{g_{1A}}} + \lambda_B k_{\perp}^2 e^{-\frac{k_{\perp}^2}{g_{1B}}} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}} \right)$$

 $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$\begin{split} f_{1\mathrm{NP}}(x,b_T^2) &\propto \mathrm{F.T.} \text{ of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right) \\ g_1(x) &= N_1 \, \frac{(1-x)^\alpha \, x^\sigma}{(1-\hat{x})^\alpha \, \hat{x}^\sigma} \\ D_{1\mathrm{NP}}(x,b_T^2) &\propto \mathrm{F.T.} \text{ of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right) \\ g_3(z) &= N_3 \frac{(z^\beta + \delta)(1-z)^\gamma}{(\hat{z}^\beta + \delta)(1-\hat{z})^\gamma} \end{split}$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$f_{1NP}(x, b_T^2) \propto F.T. \text{ of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$D_{1NP}(x, b_T^2) \propto F.T. \text{ of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right)$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1-z)^{\alpha}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\alpha}}$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$\begin{split} f_{1NP}(x, b_T^2) &\propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right) \\ g_1(x) &= N_1 \, \frac{(1-x)^{\alpha} \, x^{\sigma}}{(1-\hat{x})^{\alpha} \, \hat{x}^{\sigma}} \\ D_{1NP}(x, b_T^2) &\propto \text{F.T. of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right) \\ g_3(z) &= N_3 \frac{(z^{\beta} + \delta)(1-z)^{\alpha}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\alpha}} \\ g_K(b_T^2) &= -g_2^2 \frac{b_T^2}{4} \end{split}$$

MAP24: flavor dependence

Flavor dependence

MAP24: flavor dependence

Flavor dependence

u, d $\overline{u}, \overline{d}$ s (sea)
MAP24: flavor dependence

Flavor dependence

MAP24: flavor dependence

Flavor dependence

MAP24: flavor dependence

Flavor dependence

charge conjugation

PDF set for

 $f_1(x,Q^2)$

 $D_1(z,Q^2)$

NNPDF3.1nnlo

Ball et al. (NNPDF), EPJ C 77 (2017)

MAPFFnnlo

Khalek et al. (MAP), PLB 834 (2022)

PDF set for

$$f_1(x,Q^2)$$

 $D_1(z,Q^2)$

NNPDF3.1nnlo

Ball et al. (NNPDF), EPJ C 77 (2017)

MAPFFnnlo

Khalek et al. (MAP), PLB 834 (2022)

100 MC replicas of unpolarized PDFs

PDF set for

$$f_1(x,Q^2)$$

 $D_1(z,Q^2)$

NNPDF3.1nnlo

Ball et al. (NNPDF), EPJ C 77 (2017)

MAPFFnnlo

Khalek et al. (MAP), PLB 834 (2022)

100 MC replicas of unpolarized PDFs

100 MC replicas of unpolarized FFs

PDF set for

$$f_1(x,Q^2)$$

 $D_1(z,Q^2)$

NNPDF3.1nnlo

Ball et al. (NNPDF), EPJ C 77 (2017)

MAPFFnnlo

Khalek et al. (MAP), PLB 834 (2022)

100 MC replicas of unpolarized PDFs

100 MC replicas of unpolarized FFs

100 MC replicas experimental data

PDF set for

$$f_1(x,Q^2)$$

 $D_1(z,Q^2)$

NNPDF3.1nnlo

Ball et al. (NNPDF), EPJ C 77 (2017)

MAPFFnnlo

Khalek et al. (MAP), PLB 834 (2022)

100 MC replicas of unpolarized PDFs

100 MC replicas of unpolarized FFs

100 MC replicas experimental data

MAP24: main results

TMD's "effective width"

Evidence of different behaviors for different flavors

Evidence of different behaviors for different measured hadrons

SoLID impact studies with MAP24

Impact study of SoLID pseudodata

Kinematics

See Ye's talk

	\sqrt{s}	Х	Q2	Z
π^+	4.0631 or 4.7	[0,0.7] (3 bins)	[1,8] (5 bins)	[0.3,0.6] (6 bins)
π^{-}	4.0631 or 4.7	[0,0.7] (3 bins)	[1,8] (5 bins)	[0.3,0.6] (6 bins)
<i>K</i> ⁺	4.0631 or 4.7	[0,0.7] (3 bins)	[1,8] (5 bins)	[0.3,0.6] (6 bins)
<i>K</i> ⁻	4.0631 or 4.7	[0,0.7] (3 bins)	[1,8] (5 bins)	[0.3,0.6] (6 bins)

Pseudodata generation

Central value obtained using average parameters of MAP24 baseline fit

Uncertainties of pseudodata

- **Stat** from simulation
- Sys 10% from simulation

16

Impact study of SoLID pseudodata: complete

Included dataset

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $x_B < 0.7$ $P_{hT} < \min \left[\min \left[0.2 Q, 0.5 z Q\right] + 0.3 \text{ GeV}, z Q\right]$

Final-state hadrons

$$\pi^+ \pi^-$$
$$K^+ K^-$$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 2 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 4 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

$$\pi^+ \pi^-$$
$$K^+ K^-$$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 6 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

19

 $Q^2 = 6 \text{ GeV}^2 x_{bj} = 0.01 \ Q^2 = 6 \text{ GeV}^2 x_{bj} = 0.1 \ Q^2 = 6 \text{ GeV}^2 x_{bj} = 0.3 \ Q^2 = 6 \text{ GeV}^2 x_{bj} = 0.5$

DISCLAIMER for impact studies

It can happen that the error bands after the impact study are similar or slightly larger than the baseline ones in certain regions

- 1- Intrinsic uncertainty from collinear PDF set (unavoidable)
- 2- Correlations (similar bands for given flavor, but smaller xsec)
- 3- Specific number of replicas (fixed by MAP24 extraction)
 - \rightarrow Statistical fluctuations

- \rightarrow state-of-the-art theoretical accuracy
- \rightarrow coherent framework (many benchmarks)

- \rightarrow state-of-the-art theoretical accuracy
- → coherent framework (many benchmarks)
- Our study on SoLID12 shows impact at large-x

- \rightarrow state-of-the-art theoretical accuracy
- → coherent framework (many benchmarks)
- Our study on SoLID12 shows impact at large-x
 - \rightarrow no precise exp. data in MAP24 (HERMES)
 - \rightarrow provide a constraint on quark TMDs in the valence region (d, u)

- \rightarrow state-of-the-art theoretical accuracy
- → coherent framework (many benchmarks)
- Our study on SoLID12 shows impact at large-x
 - \rightarrow no precise exp. data in MAP24 (HERMES)
 - \rightarrow provide a constraint on quark TMDs in the valence region (d, u)
 - → useful to understand the role of power corrections in SIDIS Hadron-Mass corrections (kinematics) See Accardi's talk in Frascati Higher-Twist corrections (dynamics)
 - \rightarrow nuclear (light) corrections never studied in TMD framework

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$
$$\mu_b = \frac{2e^{-\gamma_E}}{|\boldsymbol{b}_T|}$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

$$\mu_b = \frac{2e^{-\gamma_E}}{|\boldsymbol{b}_T|} \quad \xrightarrow{b_T \gg 1} \quad 0$$

$$\mathcal{E}_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

$$\mu_b = \frac{2e^{-\gamma_E}}{|\mathbf{b}_T|} \xrightarrow{b_T \gg 1} 0 \qquad \alpha_S(\mu_b) \to +\infty$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

$$\mu_b > \mu \qquad \infty \qquad \stackrel{b_T \ll 1}{\longleftarrow} \qquad \mu_b = \frac{2e^{-\gamma_E}}{|\boldsymbol{b}_T|} \qquad \stackrel{b_T \gg 1}{\longrightarrow} \qquad 0 \qquad \alpha_S(\mu_b) \to +\infty$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

 b_* -prescription

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\} : C$$

Collins, Soper, Sterman, Nucl. Phys. B250 (1985) Collins, Gamberg, et al., PRD (2016) Bacchetta, Echevarria, Mulders, et al., JHEP 11 (2015)

 μ

$$\begin{split} f_{NP}(x, b_T^2) \exp \left\{ g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} \right\} &: \mathsf{C} \\ \hline \mu_b > \mu & \infty & \longleftarrow & \mu_b = \frac{2e^{-\gamma_E}}{|b_T|} & \xrightarrow{b_T \gg 1} & 0 & \alpha_S(\mu_b) \to +\infty \\ \mathbf{b}_* \text{-prescription} \\ b_{\max} = 2e^{-\gamma_E} & & \mu_b = \frac{2e^{-\gamma_E}}{\mu} & \xrightarrow{b_{\max}} & 0 & \alpha_S(\mu_b) \to +\infty \\ \mathbf{b}_{\min} = \frac{2e^{-\gamma_E}}{\mu} & & \varphi = 2 \operatorname{GeV} & \varphi = 2 \operatorname{GeV} \\ \operatorname{Colling, Soper, Sterman, Nucl. Phys. B250 (1985)} & & \varphi = \frac{1}{2} \operatorname{GeV} & \varphi = 2 \operatorname{GeV} & \varphi = 2$$

0.2

0

0

1

С Collins, Gamberg, et al., PRD (2016) Bacchetta, Echevarria, Mulders, et al., JHEP 11 (2015)

b

$$\hat{f}_1(x, b_T^2; \mu, \zeta) = \left[\frac{\hat{f}_1(x, b_T^2; \mu, \zeta)}{\hat{f}_1(x, b_*(b_T^2); \mu, \zeta)}\right] \hat{f}_1(x, b_*(b_T^2); \mu, \zeta) \equiv f_{\rm NP}(x, b_T^2; \zeta) \hat{f}_1(x, b_*(b_T^2); \mu, \zeta)$$

 $b_{st}(b_T^2)$

3

 $|b_T|$

 $\mathbf{2}$

0.2

0

0

1

Collins, Gamberg, et al., PRD (2016) Bacchetta, Echevarria, Mulders, et al., JHEP 11 (2015)

$$\hat{f}_1(x, b_T^2; \mu, \zeta) = \left[\frac{\hat{f}_1(x, b_T^2; \mu, \zeta)}{\hat{f}_1(x, b_*(b_T^2); \mu, \zeta)}\right] \hat{f}_1(x, b_*(b_T^2); \mu, \zeta) \equiv f_{\mathrm{NP}}(x, b_T^2; \zeta) \hat{f}_1(x, b_*(b_T^2); \mu, \zeta)$$

 $b_{st}(b_T^2)$

3

 $|b_T|$

 $\mathbf{2}$

Normalization of SIDIS calculation

Normalization issue confirmed also in other analyses from different collaborations

Vladimirov, JHEP 12 (2023)

Gonzalez-Hernandez, PoS DIS2019 (2019)

Normalization of SIDIS calculation

Normalization issue confirmed also in other analyses from different collaborations

Sun, Isaacson, Yuan, Yuan, IJNP A (2014) Gonzalez-Hernandez, PoS DIS2019 (2019) Vladimirov, JHEP 12 (2023)

Gonzalez-Hernandez, PoS DIS2019 (2019)

Normalization of SIDIS calculation

MAP22 work solution

Good agreement for almost all bins
MAP22 work solution

SIDIS multiplicity

$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|$$

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity

$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ dz} \right|$$

Collinear SIDIS cross section

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity

$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ dz} \right|$$

Collinear SIDIS cross section

Good agreement theory/data

Khalek, Bertone, Nocera, et al., PRD 104 (2021)

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity

$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ} \frac{d\sigma}{dx dQ dz} \right|$$

Collinear SIDIS cross section

Normalization of prediction such that

$$\int d\mathbf{P_{hT}}W(x, z, Q, \mathbf{P_{hT}}) = \frac{d\sigma}{dxdQdz}$$

Piacenza, PhD thesis (2020)

Good agreement theory/data

Khalek, Bertone, Nocera, et al., PRD 104 (2021)

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$$

Collinear SIDIS cross section $\frac{d\sigma}{dx dQ dz}$

Normalization of prediction such that

Good agreement theory/data

Khalek, Bertone, Nocera, et al., PRD 104 (2021)

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$$

Collinear SIDIS cross section $\frac{d\sigma}{dx dQ dz}$

Normalization of prediction such that

Good agreement theory/data

Khalek, Bertone, Nocera, et al., PRD 104 (2021)

Good agreement for almost all bins

MAP22 work solution

SIDIS multiplicity
$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$$

Collinear SIDIS cross section $\frac{d\sigma}{dx dQ dz}$

Normalization of prediction such that

Good agreement theory/data

Khalek, Bertone, Nocera, et al., PRD 104 (2021)

Good agreement for almost all bins

MAPTMD24: new approach

high sensitivity to flavor dependence

+ deuteron target

 $e + d \rightarrow e' + h^+ + X$ $e + d \rightarrow e' + h^- + X$

 $p + p \rightarrow \gamma^*/Z \rightarrow l^+ + l^ q\bar{q}$ in the initial state

low sensitivity to flavor dependence

Impact study of SoLID pseudodata: pions

Included dataset

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $x_B < 0.7$ $P_{hT} < \min \left[\min \left[0.2 Q, 0.5 z Q\right] + 0.3 \text{ GeV}, z Q\right]$

Final-state hadrons

 \boldsymbol{x}

 $\sim 2000 \text{ MAP24}$ + $\sim 800 \text{ SoLID} \text{ pseudodata}$ $\int_{10^{0}}^{10^{2}} \int_{10^{1}}^{10^{2}} \int_{10^{-3}}^{10^{2}} \int_{10^{-1}}^{10^{-2}} \int_{10^{-1}}^{10^{-1}} \int_{10^{0}}^{10^{-1}} \int_{10^{0}}^{10^{$

 10^{3}

 $|k_{\perp}|[{
m GeV}]$

 $|k_{\perp}|[{
m GeV}]$

 $\pi^+ \pi^-$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 2 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

 $|k_{\perp}|[{
m GeV}]$

 $|k_{\perp}|[{
m GeV}]$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 4 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

-0.5

strange

0.1

0.5

 $|k_{\perp}|[{
m GeV}]$

0.9

0.1

0.5

 $|k_{\perp}|[{
m GeV}]$

0.9

0.1

0.5

 $|k_{\perp}|$ [GeV]

0.9

0.1

0.5

 $|k_{\perp}|[{
m GeV}]$

0.9

 $\pi^+ \pi$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 6 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL $\times 0.7$

 $\times 0.04$

 $\times 0.2$

 $\times 0.5$

30

Impact study of SoLID pseudodata: kaons

Included dataset

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $x_B < 0.7$ $P_{hT} < \min \left[\min \left[0.2 Q, 0.5 z Q\right] + 0.3 \text{ GeV}, z Q\right]$

 $\sim 2000 \text{ MAP24}$ + $\sim 800 \text{ SoLID}$ pseudodata 10^{0} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10} 10^{10}

 10^{3}

Final-state hadrons

 \boldsymbol{x}

32

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 2 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

 $Q^2 = 2 \text{ GeV}^2 x_{bj} = 0.01 \ Q^2 = 2 \text{ GeV}^2 x_{bj} = 0.1 \ Q^2 = 2 \text{ GeV}^2 x_{bj} = 0.3 \ Q^2 = 2 \text{ GeV}^2 x_{bj} = 0.5$

 $Q^2 = 4 \text{ GeV}^2 x_{bj} = 0.01 \ Q^2 = 4 \text{ GeV}^2 x_{bj} = 0.1 \ Q^2 = 4 \text{ GeV}^2 x_{bj} = 0.3 \ Q^2 = 4 \text{ GeV}^2 x_{bj} = 0.5$

33

 $K^+ K^-$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 4 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL

34

 $K^+ K^-$

x = 0.01, 0.1, 0.3, 0.5 $Q^2 = 6 \text{ GeV}^2$

Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

Uncertainty bands account for 68% CL