Study Polarized Sea with SoLID@JLab22

Ching Him Leung, Jefferson Lab

In Collaboration with Ye Tian, Jian-ping Chen, Dave Gaskell and Arun Tadepalli

Unpolarized Structure Functions

• The unpolarized structure functions have be extensively studied by various experiments

2

SEAQUEST Results: Unpolarized Light Sea

- SeaQuest results show that nature prefers $\overline{d} > \overline{u}$ in the proton
- This flavor asymmetry cannot be explained by gluon splitting, a non perturbative mechanism is needed
- The results are consistent with various models, including meson cloud and statistical model

$$\left. \frac{\sigma_{pd}^{DY}}{2\sigma_{pp}^{DY}} \right|_{x_1 \gg x_2} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right)$$

Polarized Structure functions

 These models can also be used to predict polarized PDFs, with different predictions between different models

PDG, Phys. Rev. D 110, 030001 (2024)

Polarized Structure functions

 These models can also be used to predict polarized PDFs, with different predictions between different models

SoLID@JLab: QCD Intensity Frontier

- Nucleon spin, proton mass, beyond standard model experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
- critical need for high luminosity (10³⁷-10³⁹ cm⁻²s⁻¹) and large acceptance
- Science reach:
 - Precision 3D imaging of the nucleon in the valence quark region
 - Beyond Standard Model searches
 - Exploring the origin of the proton mass and gluonic force in the non-perturbative regime.

Fraction of nucleon momentum

SoLID @ JLab22 SIDIS Polarized Asymmetries π + on n

- Statistical uncertainty only (systematics to be studied in the next a few months)
- 100 PAC days; Luminosity = 10³⁶cm²s⁻¹, acceptance form EvneSoLID simulation
- Event generator (LO), PDF: CJ15lo; FF: DSSFFlo

•
$$\delta A_{LL} = \frac{1}{fn \cdot 0.6 \cdot 0.86} \sqrt{\frac{1}{N_{acc}}}$$

- P_b =85% beam polarization; P_t =60% pol ³He target polarization (P_t =70% for pol proton target)
- $P_n = 86\%$ neutron polarization in ³He; neglecting the proton part
- f_n is the dilution factor-fraction of neutron cross section relative to the nuclear cross section
- Summing over P_T and z ranges: $0 < P_T < 1$ GeV , 0.2 < z < 0.6

SoLID @ JLab22 SIDIS Polarized Asymmetries: π/K on n

01/10/2025

SoLID @ JLab22 SIDIS Polarized Asymmetries: π/K on p

01/10/2025

SoLID @ JLab22 SIDIS Polarized u and d PDFs

- At LO, assuming x z factorization
- $A_{LL}(x,Q^2,z) = \frac{\sum_f e_f^2 \Delta q_f(x,Q^2) \cdot D_f^h(z,Q^2)}{\sum_f e_f^2 q_f(x,Q^2) \cdot D_f^h(z,Q^2)} \quad \bigstar$
- Using LO Fragmentation Function DSSFFLO
- The band represent the 67% uncertainty band in NNPDFpol1.1
- The SoLID measurement can reach higher x than previous measurements

SoLID @ JLab22 SIDIS Polarized \bar{u} and \bar{d} PDFs

- At LO, assuming x z factorization
- $A_{LL}(x,Q^2,z) = \frac{\sum_f e_f^2 \Delta q_f(x,Q^2) \cdot D_f^h(z,Q^2)}{\sum_f e_f^2 q_f(x,Q^2) \cdot D_f^h(z,Q^2)} \quad \stackrel{\bullet}{\boxtimes} \overset{0.08}{\underset{0.06}{\longrightarrow}}$
- Using LO Fragmentation Function DSSFFLO
- The band represent the 67% uncertainty band in NNPDFpol1.1
- The SoLID measurement can reach higher x than previous measurements
- With much reduced statistical uncertainty in the light sea quarks compared to COMPASS

SoLID @ JLab22 SIDIS Polarized \bar{u} and \bar{d} PDFs

- At LO, assuming x z factorization
- $A_{LL}(x,Q^2,z) = \frac{\sum_f e_f^2 \Delta q_f(x,Q^2) \cdot D_f^h(z,Q^2)}{\sum_f e_f^2 q_f(x,Q^2) \cdot D_f^h(z,Q^2)} \left\{ \sum_{0.06}^{0.08} \right\}$
- Using LO Fragmentation Function DSSFFLO
- The band represent the 67% uncertainty band in NNPDFpol1.1
- The SoLID measurement can reach higher x than previous measurements
- With much reduced statistical uncertainty in the light sea quarks compared to COMPASS

P_T Dependence of Longitudinal Asymmetries from n

- The helicity TMDs can also be extracted by studying the P_T dependence
- 100 PAC days, statistic uncertainty only
- Integrate over
 - 0.2 < *z* < 0.6
 - $1 \, \text{Gev}^2 < Q^2 < 20 \, \text{Gev}^2$
 - $0 < x_{bj} < 1$

Ye Tian

Systematic Uncertainties

- Next steps:
 - 1. evaluation of experimental systematic uncertainties
 - 2. evaluation of theoretical uncertainties: need help from theory and global fit groups.
- Experimental Systematics:
 - similar to SIDIS-TMD study done for 11 GeV program?
- Theoretical Systematics:
 - 1. NLO extraction
 - 2. contamination from non-current fragmentation and higher-twist effects
 - 3. contamination from vector mesons
 - 4. effect from missing high high-Pt region
 - 5. assumptions of charge symmetry and isospin symmetry in FF
 - 6. nuclear effect for neutron extraction
 - 7.?

Summary

- Light sea (\bar{u} and \bar{d}) at intermediate x (0.1-0.5) is of great interest and in need of high precision data
- High luminosity at 22GeV would be ideal for studying light sea at intermediate x
- SoLID @ JLab22 projections show potential to make an impact on polarized light sea; need careful systematic/theoretical studies.
 - Projections on P_t dependence of longitudinal asymmetries also suggest SoLID can provide strong constraints on helicity TMDs
- Next steps: systematic uncertainty studies
 - And perhaps extracting Δs from kaon production