

SoLID Detector R&D Tsinghua Side

Zhihong Ye,

Department of Physics, Tsinghua University

SoLID Collaboration Meeting, 01/09-10/2024

Part

scintillator

WLS fiber

outside surface

fiber end reflector

lead

> Shashlyk ECal Material Overview:

Type/Material

KEDI enhanced

Y11 multi-cladding

TiO2

ESR film

paint TiO2*

optical reflective glue

Tyvek

*instead of reflective layer between lead

Wavelength-Shifting Fiber

> Shashlyk ECal Assembly (by Shandong):

Scintillator tiles and leads are cross stacked in the mold, keeping pressure for one day.

Assembled module

Inserts fibers

fiber end after polished

cover plate above ESR

fiber polished with CNC milling machine

fiber end after polished

> Shashlyk ECal Assembly (by Shandong):

□ First bunch of 7 modules shipped to Tsinghua

□ Second bunch of 7 modules made at Shandong already

Materials paid with my startup grant (gone) + SDU's own resources
Stock up additional ~3000m WLS fibers

1st ECAL Super-module

> Super-module Assembly (Tsinghua)

- Better to install all modules in the holes, install covers, then tighten them w/ screw caps → impossible to remove the central one after installation
- Very heavy! Each module weights 15kg → install them on the floor with a wheel-platform
- Light leak at the top and the bottom
- □ Still need to figure out how to install LED lights

Light-Leak at the top&bottom

7/17

1st ECAL Super-module

> Super-module Assembly (Tsinghua)

□ Install 7 Hamamatsu PMTs

Design and order 7 metal cover tubes

□ 3D printed a plastic cover to fix PMTs and block out lights on top

1st ECAL Super-module

> Cosmic-ray Test at Tsinghua

DAQ Setup:

- ✓ Two scintillator pads (4 chs)
- ✓ NIM crate for HV + triggers, VME crate for QDC, v1742
- ✓ Setting up CODA → need CPU
- ✓ To add two layers of Micromegas trackers next week → need APV25 or similar readout electronics.

- **T**wo photon sensor options:
 - Three single anode MCP-PMTs May not need clear fibers
 - Hamamatsu MaPMT in hand: 2x H12700A, 2x H12700A-03, 2x H12445-100

New Lab at Tsinghua

Full Operation in December 2024

Underground 2nd floor, 100m²,
Two test rooms, one dark/clean room

December 2023

Multi-gap Resistive Plate Chamber (MRPC)

Low-resistivity glass plates, Standard gas (95% F134a + 5% iso-butane), HV(~12kV)
Good performances:

time resolution, efficiency, rate capacity (>30kHz/cm²), radiation-hard, magnet safe

□ Certain spatial resolution (by strip pitch, 0.5cm~1.0cm)

Low cost, easy manufacturing, large sensitive area (up to 1.0mx0.5m)

Used by ALICE, STAR, etc.

11/17

MRPC at Tsinghua

> Tsinghua's new Sealed MRPC (sMRPC)

- \Box Gen3 MRPC with sealed gas \rightarrow No more boxes!
- □ More compact, less radiation length
- □ Reduce greenhouse gas emmission (20cc/cm²/min)
- □ Regular glasses (max. rate limited)
- Can make into big sizes

□ sMRPC for CEE & CBM experiments

- ✓ 32 x 27 cm²
- ✓ handle up to 25KHz/cm²
- ✓ 8x2 layers at 140um \rightarrow 60ps!
- ✓ Readout by NINO+TDC
- Mass production at Tsinghua's Miyun workshop

Y. Wang et al 2019 JINST 14 C06015 D. Hu et al 2019 JINST 14 C09014

MRPC at Tsinghua

> Tsinghua's High-Time Reoslution MRPC

□ For SoLID's high-rate & high-background environment

- ✓ Low resistance glass ($10^{10} \Omega \cdot cm$, best quality)
- ✓ 32-gaps (4 stacks), 400 μ m thin glasses
- ✓ 104um gas-gap + waveform-sampling
 - \rightarrow 20ps & 95% efficiency at 15kHz
- ✓ 128um gas-gap + ToT method → 20ps at 15kHz

✓ Small sizes & not sealed yet Counts Entries 674 60 50 best Mean 1.1 Std Dev 28.75 (1kHz) χ^2 / ndf 47.22 / 32 57.34 ± 2.96 Constant -1.608 ± 1.007 Mean Sigma 23.24 ± 0.76 $\sigma_{MRPC} = \frac{\sigma(\Delta t)}{\sqrt{2}}$ 16.82ps 20 10 400 600 800 -200 200 -400Time difference [ps]

□ Not proven in real beam!

Y. Yu et al 2022 JINST 17 P02005Y. Yu et al 2020 JINST 15 C01049

12/17

FEE for MRPC

Readout Electronics

Goals: Test out time-resolution w/ front-end electronics options

□ Supports from Crispan Williams, Jorgen Christiansen, David Porret (CERN), Lei Zhao (USTC), & Zhen Hu (Shenzhen Advanced Research

PreAmp + DIS

- NINO (discontinued)
- pico2023 (*NEW*)
- **D** TDC
 - FPGA base (not rad. dard)
 - picoTDC (*NEW*)
- □ Waveform Sampler
 - DSR4 (slow)
 - SAMPIC (at Jlab now)
 - NALU AARDVARC

MRPC Test Plan

>Recent updates:

- JLab local test with cosmic-ray + xray background (Sanghwa & Alex & Barcu)
 - ✓ 4 planes of 16-layer sMRPC + SAMPIC & NALU → ordering gas now
- Tsinghua's local test with cosmic-ray + x-ray background
 - ✓ 1 plane of 32-layer high-rate MRPC (not sealed) + 1 plane of 16-layer sealed mRPC (regular rate)
 - ✓ FEE to test: USTC FEE 64 chs in hand + 128 channels in production , pico2023 + DT5202 (picoTDC)
 - $\checkmark\,$ Order of 200 picoTDC chips on hold due to Euro-Union regulation
 - ✓ Restrict to by SAMPIC
- Prepare Jlab beam test soon
- Use mRPC in the upcoming Hypernuclear experiment? \rightarrow Electronics channels needed and how to get them?

15/17

MRPC Test Plan

>Cosmic-ray Test at Tsinghua

□ Complete new test setup in the new lab (high-rate MRPC + USTC FEE + picoTDC)

□ To be integrated with the ECAL test

Beam Test Plan

□ Test of photon-sensors for ECAL:

- 3x MCP-PMTs from night-vison to do radiation tolerance test at IMP or CSNS in 2025
- Magnet field test at Jlab (one MCP at Jlab now)

□ MRPC test at IMP w/ proton beam

□ Explore electron beam test facilities, e.g. Spring-8 LEPS2, DESY, or Hall-D? → need to discuss

Summary

Tsinghua's cosmic ray test lab is ready for ECAL and mRPC Tests

□First ECAL Super-module assembled and ready to do cosmic ray tests

- \checkmark Second super-modules to be assembled
- ✓ Start SPD & Pre-Show R&D?

□mRPC tests are in underway at Tsinghua and preparing at Jlab

Explore Beam test facilities for ECAL + mRPC

□Need CODA to do integrated tests with ECAL, mRPC, micro-megas

> Better to think earlier for strategies to move forward with uncertain future!

THANKS!

Cosmic-ray Test at Tsinghua

□ Wang's lab (sMRPC + USTC FEE, diff. gas mixtures)

• Shashlyk ECal Assembly (by Shandong):

□ The fiber coupling test is ongoing. The new adapter design is easy for assembling, still under study to improve the quality.

• Shashlyk ECal Assembly (by Shandong): :

Irradiation resistance test at IMP

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Total Irradiation(MeV/cm ²) by simulation (uncertainty 10%)	8.6E+11	1.4E+12	2.8E+12	3.7E+13	1.1E+14 (Not tested)
Test material	clear fiber	clear fiber BCF91A-MC scintillator	clear fiber BCF91A-MC scintillator	clear fiber BCF91A-MC scintillator	BCF91A- MC scintillator

□ Satisfy radiation resistance requirement

