

HUONG NGUYEN

ON BEHALF OF THE GAS DETECTOR DEVELOPMENT GROUP AT UVA

9 JANUARY 2025

SoLID GEM and Tracker Outline

- SoLID GEM Overview
- Lessons Learned from SBS GEM Trackers
- Lessons Learned from R&D on MPGDs
 - R&D on Thin-Gap Triple GEM for EIC
 - $\circ~$ R&D on Large-area $\mu RWELL$ for CLAS12

GEM Overview for SIDIS

Plane	Z (cm)	R _ı (cm)	R _o (cm)	Length (cm)
1	-175	36	87	51
2	-150	21	98	77
3	-119	25	112	87
4	-68	32	135	103
5	5	42	100	58
6	92	55	123	68

- → Under optimization process:
 - GEM plane locations
 - Sizes of GEM modules
- → Total active area ~ 21 m²

GEM Overview for PVDIS

Location	Z (cm)	R_{min} (cm)	R_{max} (cm)
1	157.5	51	118
2	185.5	62	136
3	190	65	140
4	306	111	221
5	315	115	228
Total			

- → Finalizing how many SIDIS GEMs could be used for PVDIS
- \rightarrow Total active area ~ 37 m²

SoLID GEM Requirements

- → Modules with a trapezoidal geometry
 - Narrow side frames to minimize material thickness in active area
- → Overall GEM-module efficiency: 92%
- → Position resolution
 - 100 μ m (1 mm) in azimuthal (radial) direction.
 - 2D U-V readout with 12° or 24° stereo angle between strips
 - 400 μm (600 μm) strip pitch for layers 1-3 (5-6)
 - The high occupancy at layer #1: split each readout strip into two channels

Hall C Beam Test

Beam test setup

- Front to back: GEM1+2, SC-A, Cer, GEM3+4, SC-C, LASPD, Preshower, Shower, SC-B
- Two test conditions: 7° and 18°
- GEM (1+2)and GEM (3+4) separation: 1.6 m

Tracking and spatial resolution

- Raw occupancy is much higher than projected for SoLID experiments
 - 40% on the front layers, 10% on the back layers
- Tested both SBS tracking algorithm and Millipede algorithm
- Residue standard deviation after alignment: 500 μm
- High occupancy, No optics, No Survey Data => How reliable is this result?

SBS GEM Tracker Overview

- Sixteen (16) layers of SBS GEM installed in experiments:
 - Forty 60 x 50 cm² GEM modules in 10 layers 36 modules in beam
 - Six 150 x 40 cm² large GEM modules All six modules in beam

• SBS GEM trackers have been running above 18 months in GMn, nTPE, GEn-II, and GEn-RP experiments

Large GEM Construction

- Active areas larger than the largest SoLID GEM detectors needed
- All six large GEM have performed exceptionally well in beam

GEM Operation at Luminosity Exceeding SoLID Requirements

GEn-II: Electron Arm tracking hit map

- **GEn-II experiment:**
 - ➢ Up to 45 uA on 60 cm ³He target
 - Luminosity ~ 5 x proposed SoLID ³He SIDIS

GMn experiment:

- Stable running with 12 uA beam on 15 cm LD2 target (test runs up to 36 uA)
- Luminosity ~ 3 x proposed SoLID PVDIS

SBS GEM performance

- > HV stable operation
- Robust under harsh conditions
- No radiation damage observed
- No detector aging effects observed
- Spatial resolution ~ 70 um for tracks perpendicular to detector.

GEM/Tracking Performance at Luminosity Exceeding SoLID Requirements

GEn-II: Electron Arm Tracking efficiency for each layer

- Tracking efficiency for each layer > 80%
- Overall tracking efficiency >97%
- A few dead areas caused by dead high voltage sectors and faulty electronics

GEn-II: Electron Arm Tracking hit map

GEM Occupancy at Luminosity Exceeding SoLID Requirements

PVDIS: Projected GEM Occupancies

PVDIS GEM occupancies		
Plane	Total strip number (u+v) per sector	Raw Occupancy (%)
1	1156	4.48
2	1374	2.55
3	1374	2.21
4	2287	0.82
5	2350	0.75

- SBS GEM reached occupancy as high as 15%
- SBS already achieved occupancy higher than occupancies projected for PVDIS and SIDIS

GEn-II: Electron Arm GEM Occupancies

High Rate Challenge for Tracking

 \succ

 \succ

HUONG NGUYEN | 9 JANUARY 2025

High detector occupancy \rightarrow Large number of 2D hit combinations \rightarrow Increase difficulty in track finding

Drop voltage on GEM protective resistors \rightarrow Lower the field strength in GEM holes \rightarrow Lower GEM gain

Individual Power Channels to maintain GEM gain in High Rates

Remove resistive HD dividers

- Use a parallel power supply to individually power the GEM electrodes
 - > Applied HV correction to compensate the voltage drop on protective resistors
 - \succ Restore the field strength in GEM holes \rightarrow restore GEM gain
 - Tested during the GEn-II, use for GEn-RP, GEp-V, LAD

GEM gain vs. Luminosity with different HV configurations

Improving track reconstruction by adding two Pixel GEM layers

 Placing two pixel-GEM layers at the front and back of SBS front-tracker

- Pixel GEM layers:
 - Triple-GEM amplification
 - Pixel readout: 9 x 9 mm²
 - Active area 40 x 150 cm²

Add two Pixel-GEM layers to SBS tracker system:

- ➤ Conversion hits resulting photon bkg →
 increase occupancy
- ➤ Apply coincidence condition between two pixel layers → resolve tracking ambiguities caused by uncorrelated bkg hits
- ➤ Narrowing down the search area for hits in the subsequent 2D-strip-readout → Accelerate track-finding process under SBS condition

Improving track reconstruction by adding two Pixel GEM layers

 Placing two pixel-GEM layers at the front and back of SBS front-tracker

- SBS tracker:
 - Procurement of components for two Pixel layers are underway (CERN)
 - Aim to install them and use during the SBS GEp experimen
- Adding pixel chambers to SoLID tracker?
 - Clean up most of the random hits and select mostly the high energy tracks.
 - Enhancing the performance of track reconstruction
 - Needs evaluation with simulations

Lesson Learned from GEM R&D for EIC

Tracking at Large Incident Angles

- Spatial resolution for small angle tracks determined by RO structure
 - For perpendicular track: σ ≅ 70 µm
- Deterioration in the spatial resolution growing with the track angle
- At large track angles, spatial resolution no longer determined by the RO structure but the drift path that particle traverses before reaching the amplification stage
- Reduce drift gap to circumvents dependence of spatial resolution on track angle
- SoLID: Need detector optimization to reach the required spatial resolution for the range of angles: $8^{\circ} \rightarrow 35^{\circ}$?

Lessons Learned from GEM R&D for EIC

Spatial Resolution of Thin-Gap Triple-GEM at Large Tracking Angles

HUONG NGUYEN | 9 JANUARY 2025

Lessons Learned from GEM R&D for EIC

Spatial Resolution of Thin-Gap Triple-GEM at Large Tracking Angles

- With a standard 3 mm drift gap, significant deterioration in spatial resolution begins with a track angle as small as $\theta = 10^{\circ}$
- Spatial resolution at track angle $\theta = 27^{\circ}$
 - $\circ~$ 3.0 mm driff gap: ~ 277 μm
 - 1.5 mm drift gap: ~ 180 μm
 - 1.0 mm drift gap: ~ 127 μm
- SoLID: Need to reduce the drift gap?

Lessons Learned from GEM R&D for EIC

Efficiency of Thin-Gap Triple-GEM with Perpendicular Track

Detector having <u>1.5 mm drift gap</u> achieves efficiency of 92% in ArCO₂ (80%/20%) gas mixture

Experience from R&D on Large-area µRWELL for CLAS12

Large µRWELL Construction & Operation

- Detector construction is much simpler compared to GEMs
 - Large-area honeycombs supporting µRWELL and cathode
 were made at UVa by vacuum gluing technique
 - Assembly time: 5 days vs. 21 days → Reduce the complexity of building a large number of detectors
 - Much less frames →significantly reduce the material within the active area
 - Robust detector (reopened in 2024 to change component)
- Lower production costs
- 98% of the detector active area is functional
- The dead area caused by dust/contamination deposited on the amplification well is negligible (compared to the entire sector of 10 cm² for GEM)

Lessons Learned from R&D on Large-area µRWELL for CLAS12

90 80

60

40

30

20

Optimizing Operating Gas mixture and Detector Structure

- Detection efficiency of the bottom readout layer is significantly lower than top readout layer
 - \circ $\;$ Due to lower gain on the bottom RO layer
 - Reducing detector overall efficiency
 - Solution: build a pair of 1D detectors facing each other; each 1D readout layer oriented in the U (or V)direction and has its own μRWELL amplification stage
- Optimization of operating gases
 - Ar/CO₂ (80%/20%): Amplification HV needed to be pushed to 600 to reach the efficiency of 90%
 - Ar/C₄H₁₀ (90%/10%): Detector reached 90% efficiency comfortably at 490 V => Operated much more stably
 - Further optimization with gas ratio in Ar/C_4H_{10}

Conclusions

- SBS runs demonstrate that the requirements for SoLID tracking can be achieved with GEMs
- Adding pixel-GEM layers could improve the performance of track reconstruction
- Need to optimization of drift gap to enhance detector spatial resolution, efficiency, & stability
- µRWELL has the potential to lower the cost, reduce fabrication complexity & material budget
- Needs evaluation with simulations!
- Pre-R&D is needed to evaluate!

Future perspectives

- Finalize prototype designs
- Make plans for building and testing prototypes
- Explore possibilities for uRwell for lower exposure layers
 - Interface with Hall B, JLab-EIC, & LHCb -Frascati

UVa GEM Fabrication and R&D Program

Research Capabilities

Simulation & Validation

Design & Construction

Characterize & Commision

Data & Physics Analysis

Group Members

- Prof. Nilanga Liyanage
- Dr. Huong Nguyen
- Dr. Asard Amedh
- Seven (7) Ph.D. Students
- Two (2) Undergrad RA
- Two (2) Technicians

HUONG NGUYEN | 9 JANUARY 2025

GEM AND TRACKING LESSONS LEARNED FROM SBS AND R&D ON MPGDs

Design and Fabrication of Thin-gap Triple-GEM Prototypes

Motivations to reduce drift gap:

 Circumvents dependence of spatial resolution on track angle & lessens the effect of magnetic field

Investigations:

- Performance of triple-GEM detectors at large acceptance with different drift gaps
- Optimize performance of detectors with different gas mixtures to recover efficiency
- Explore different cathode structures to maintain stability of thin-gap detectors
- Design and fabrication of 6 prototypes:

Huong Nguyen (UVA)

- Three prototypes (10cm x 10 cm) having the same structure, different drift gap 1.0, 1.5, 3.0 mm
- Three prototypes having the same drift gap,
 different cathode structures

	Cathode	Drift Gap	Tested at FNAL in June 2023
Proto I	Copper-Kapton foil	1.0 mm	ArCO2, HV & Angle Scan
Proto II	Copper-Kapton foil	1.5 mm	ArCO2 & KrCO2 HV & Angle Scan
Proto III	Copper-Kapton foil	3.0 mm	ArCO2, Angle Scan
Proto IV	400 μm-pitch fine Copper wire	1.5 mm	ArCO2, HV & Angle Scan
Proto V	800 µm-pitch fine Copper wire	1.5 mm	ArCO2, HV & Angle Scan

4

SoLID Collaboration Meeting

Jan 9, 2025

FermiLab Beam Test Setup for Spatial Resolution Study

Setup for spatial resolution study:

- Setup for spatial resolution studies was designed and built by <u>K. Gnanvo and J. Lee (JLab)</u>
- 4 trackers: 2 trackers upstream and 2 trackers downstream
- A rotation stand placed in the middle allows to test up to 3 prototypes at the time
- Rotation stand rotates the X-Y plane by an angle θ →
 x-spatial resolution will be affected the most as θ
 increases

Investigate spatial resolution with track angle

spanning from 0° to 45° for :

- Same prototype in different gas mixtures
 (KrCO2 & ArCO2)
- Prototypes with different drift gaps & cathode structure

SoLID Collaboration Meeting

Efficiency Study of the Thin-Gap Triple-GEM Detectors

Preliminary results from ongoing analysis of June 2023 Fermilab test beam data

• Efficiency vs. Gas mixture study:

- Efficiency vs. Drift Gap study:
- Efficiency vs. Drift gap
- Efficiency of <u>**1.5 mm drift gap detector**</u> vs. HV applied to GEM foil with 2 different gas mixtures KrCO2 and ArCO2
- <u>1.5 mm drift gap detector</u> reaches 93% efficiency in ArCO2 at HV GEM significantly lower than in KrCO2 (<u>355V vs. 390V</u>)
- ⇒ In optimized ArCO2 (80%/20%) gas mixture, a detector having <u>1.0 mm drift gap</u> achieves efficiency of 90%.

Huong Nguyen (UVA)

6

Spatial resolution vs. track angle studies

X-Residuals vs. Track angle

Y-Residuals vs. Track angle

45

10

Design of GEM Module for MOLLER

Exploded View of Basic Components

Specifications of MOLLER Triple-GEM Module

- ⇒ Trapezoidal shape design with thin curved edge allow detectors to be operated near the beam pipe
- \Rightarrow Module is 2700 cm² in size with active area of ~ 2000 cm²
- \Rightarrow Each GEM foil consists of 20 individual sectors
- \Rightarrow UV-readout with ten (10) APV25 cards

Gas Flowing Simulations of MOLLER GEM Module

- ⇒ Five (5) gas inputs and five (gas) outputs with oval smooth-edged gas pockets
- ▷ Consistent gas flow is achieved inside the detector
- Avoid pressure buildups inside the module

GEM Quality Control and Assembling

- ⇒ Preparation of frames (sanding, washing & varnishing)
- ⇒ Stretching and gluing GEM foils on the prepared frames
- ⇒ High voltage sector test is repeated on Raw,
 Framed & Chambered GEM foils
- Assembling the module starting from the
 bottom readout support and sealing the
 assembled detector
- ⇒ Connecting gas fixtures and completing the high voltage distribution

GEM leaked current distribution

Completed module

SoLID Collaboration Meeting

32

Random trigger was used for x-ray test, hit counts more sensitive to strip noise – reason we see less counts on the edges of each APV
 for data taken with SRS

cluster position correlation layer0

UVa GEM Fabrication and R&D Program

Thin-Gap Triple-GEM at Large Tracking Angles

Triple-GEM detectors at small track angle

- Standard 3mm drift gap
- Spatial resolution for small angle tracks determined by RO structure
- **♦** For perpendicular track: σ ≅ 70 µm

Deterioration in the spatial resolution growing with the track angle

Triple-GEM detectors at large track angle

- Spatial resolution no longer determined by the RO structure but the drift path that particle traverses before reaching the amplification stage
- Reduce drift gap to circumvents dependence of spatial resolution on track angle

The **µ-RWELL**

