First Look at Charged Pions SIDIS Kinematics on RG-D Data

CLAS Collaboration Meeting

November 13th, 2024

Suman Shrestha

Temple University

Outlines

- 1. Semi-inclusive Deep Inelastic Scattering (SIDIS)
 - i. Kinematical Variables
 - ii. Experimental Observables
 - a. Multiplicity Ratio
 - b. Azimuthal Asymmetry
- 2. **RG-D Target Configuration**
- 3. Preliminary Analysis Results
- 4. Summary and Outlook
- 5. Acknowledgement

Semi-inclusive Deep Inelastic Scattering

✓ <u>SIDIS process</u> is considered as;

 $e(l) + p(P) \rightarrow e'(l') + h(P_h) + X$

✓ <u>Kinematical variables</u>

 $l = (E, \vec{l}), l' = (E', \vec{l}'), P = (M, \vec{0});$ where M is Mass of a proton, and q = l - l',

 $\nu = E - E'$

 $Q^2 = -q^2 = 4EE'\sin^2(\frac{\theta_e}{2}),$

$$x_{Bj} = \frac{Q^2}{2 P \cdot q} = \frac{Q^2}{2M\nu},$$

$$y = \frac{\mathbf{P}.q}{\mathbf{P}.l} = \frac{\nu}{E},$$

 $z_h = \frac{\mathbf{P} \cdot \mathbf{P}_h}{\mathbf{P} \cdot q} = \frac{E_h}{\nu},$

 $W^2 = M^2 - Q^2 + 2M\nu$,

$$P_T^2 = \left(\frac{|\vec{q} \times \overrightarrow{P_h}|}{|\vec{q}|}\right)^2 = \left|\overrightarrow{P_h}\right|^2 \sin^2\theta; \text{ where } \sin\theta = \frac{|\vec{q} \times \overrightarrow{P_h}|}{|\vec{q}||\overrightarrow{P_h}|}$$

Experimental Observables

Hadron Multiplicity Ratio

$$R_{M}^{h}(z,v,Q^{2},P_{T}^{2}) = \frac{\frac{N_{A}^{h}(z,v,Q^{2},P_{T}^{2})}{N_{A}^{e}(v,Q^{2})}}{\frac{N_{D}^{h}(z,v,Q^{2},P_{T}^{2})}{N_{D}^{e}(v,Q^{2})}}$$

where,

 $N_A^h \& N_A^e$ = Number of SIDIS hadron h and DIS electrons on a target A $N_D^h \& N_D^e$ = Number of SIDIS hadron h and DIS electrons on LD2 target

Azimuthal Asymmetry

 $\langle \cos \phi_h \rangle$, $\langle \sin \phi_h \rangle$, and $\langle \cos 2 \phi_h \rangle$

> Explore the nuclear transverse momentum distributions (nTMDs) for charged pions

RG-D Target Configuration

- ✓ Nuclear targets : LD2, Carbon (C), Copper (Cu), and Tin (Sn)
- ✓ Used a polarized electron beam with an energy of 10.5 GeV
- ✓ 5-cm-long LD2 cell positioned at -5 cm relative to the CLAS12 center within the newly constructed cryogenic system
- ✓ 5-cm-apart solid foils centered at -5 cm

RG-D Target Configuration Contd.

Target	Z-Vertex (cm)	
Liquid Deuterium (LD2)	(-15.000,5.000)	
Carbon (CxC)	(-10.784, 5.000)	Credit of Mathieu Ouillon
Copper (<mark>Cu</mark>)	(-11.463, -6.576)	
Tin (Sn)	(-6.137, 5.000)	

Preliminary Analysis Results

- ✓ Using the reconstructed particle bank for the particle identification (PID)
- ✓ Fiducial cuts are still under study and are not implemented yet,
 - 1. For electron selection
 - I. PID=11
 - II. Status < 0
 - III. -5 < chi2Pid < 5
 - 2. For +ve pion selection
 - I. PID= 211
 - II. -10 < chi2Pid < 10
 - 3. For –ve pion selection
 - I. PID= -211
 - II. -10 < chi2Pid < 10

Kinematical variables for LD2 target

Preliminary Multiplicity Ratio Analysis

Suman Shrestha

CLAS collaboration meeting, November 2024

Preliminary Multiplicity Ratio Analysis Contd.

- ✓ As debugging of analysis codes and methods, multiplicity ratios for charged pions and various nuclear targets have been extracted before fiducial cuts and corrections
- ✓ Next, azimuthal asymmetries will be studied
- ✓ Then, charged pions nTMDs will be explored via the extracted azimuthal asymmetries

Acknowledgement

This work is supported by the US DOE award #: DE-SC0016577

Thank

CLAS collaboration meeting, November 2024

Backup Slides

Multiplicity Ratio vs P $_{_{\rm T}}^2$ for Carbon, Copper, and Tin

